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The objective of the third edition of Languages and Machines: An Introduction to the
Theory of Computer Science remains the same as that of the first two editions, to provide
a mathematically sound presentation of the theory of computer science at a level suitable
for junior- and senior-level computer science majors. The impetus for the third edition was
threefold: to enhance the presentation by providing additional motivation and examples; to
expand the selection of topics, particularly in the area of computational complexity; and to
provide additional flexibility to the instructor in the design of an introductory course in the
theory of computer science.

While many applications-oriented students question the importance of studying the-
oretical foundations, it is this subject that addresses the “big picture" issues of computer
science. When today’s programming languages and computer architectures are obsolete
and solutions have been found for problems currently of interest, the questions considered
in this book will still be relevant. What types of patterns can be algorithmically detected?
How can languages be formally defined and analyzed? What are the inherent capabilities
and limitations of algorithmic computation? What problems have solutions that require so
much time or memory that they are realistically intractable? How do we compare the relative
difficulty of two problems? Each of these questions will be addressed in this text.

Organization

Since most computer science students at the undergraduate level have little or no background
in abstract mathematics, the presentation is intended not only to introduce the foundations
of computer science but also to increase the student’s mathematical sophistication. This
is accomplished by a rigorous presentation of the concepts and theorems of the subject
accompanied by a generous supply of examples. Each chapter ends with a set of exercises
that reinforces and augments the material covered in the chapter.

To make the topics accessible, no special mathematical prerequisites are assumed.
Instead, Chapter 1 introduces the mathematical tools of the theory of computing: naive set
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theory, recursive definitions, and proof by mathematical induction. With the exception of
the specialized topics in Sections 1.3 and 1.4, Chapters 1 and 2 provide background material
- that will be used throughout the text. Section 1.3 introduces cardinality and diagonalization,
which are used in the counting arguments that establish the existence of undecidable
languages and uncomputable functions. Section 1.4 examines the use of self-reference in
proofs by contradiction. This technique is used in undecidability proofs, including the proof
that there is no solution to the Halting Problem. For students who have completed a course
in discrete mathematics, most of the material in Chapter 1 can be treated as review.
Recognizing that courses in the foundations of computing may emphasize different
topics, the presentation and prerequisite structure of this book have been designed to permit
a course to investigate particular topics in depth while providing the ability to augment
the primary topics with material that introduces and explores the breadth of computer
science theory. The core material for courses that focus on a classical presentation of formal
and automata language theory, on computability and undecidability, on computational
complexity, and on formal languages as the foundation for programming language definition
and compiler design are given in the following table. A star next to a section indicates that
the section may be omitted without affecting the continuity of the presentation. A starred
section usually contains the presentation of an application, the introduction of a related
topic, or a detailed proof of an advanced result in the subject.

Formal Languages

Formal Language Computability Computational for Programming
and Automata Theory Theory Complexity Languages

Chap. 1: 1-3, 6-8 Chap. 1: all Chap. 1: all Chap. 1: 1-3, 6-8
Chap. 2: 1-3, 4* Chap. 2: 1-3, 4* Chap. 2: 1-3, 4* Chap. 2: 14
Chap. 3: 1-3, 4* Chap. 5: 1-6, 7* Chap. 5: 14, 5-7* Chap. 3: 14
Chap. 4: 1-5, 6%, 7 Chap. 8: 1-7, 8* Chap. 8: 1-7, 8* Chap. 4: 1-5, 6*, 7
Chap. 5: 1-6, 7* Chap. 9: 1-5, 6* Chap. 9: 1-4, 5-6* Chap. 5: 1-6, 7*
Chap. 6: 1-5, 6* Chap. 10: 1 Chap. 11: 1-4, 5* Chap. 7: 1-3, 4-5*
Chap. 7: 1-5 Chap. 11: all Chap. 14: 1-4, 5-7* Chap. 18: all
Chap. 8: 1-7, 8* Chap. 12: all Chap. 15: all Chap. 19: all
Chap. 9: 1-5, 6* Chap. 13: all Chap. 16: 1-6, 7* Chap. 20: all
Chap. 10: all Chap. 17: all

The classical presentation of formal language and automata theory examines the rela-
tionships between the grammars and abstract machines of the Chomsky hierarchy. The com-
putational properties of deterministic finite automata, pushdown automata, linear-bounded
automata, and Turing machines are examined. The analysis of the computational power of :
abstract machines culminates by establishing the equivalence of language recognition by
Turing machines and language generation by unrestricted grammars. .
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Computability theory examines the capabilities and limitations of algorithmic prob-
lem solving. The coverage of computability includes decidability and the Church-Turing
Thesis, which is supported by the establishment of the equivalence of Turing computabil-
ity and p-recursive functions. A diagonalization argument is used to show that the Halting
Problem for Turing machines is unsolvable. Problem reduction is then used to establish the
undecidability of a number of questions on the capabilities of algorithmic computation.

The study of computational complexity begins by considering methods for measuring
the resources required by a computation. The Turing machine is selected as the framework
for the assessment of complexity, and time and space complexity are measured by the
number of transitions and amount of memory used in Turing machine computations. The
class P of problems that are solvable by deterministic Turing machines in polynomial time
is identified as the set problems that have efficient algorithmic solutions. The class NP and
the theory of NP-completeness are then introduced. Approximation algorithms are used to
obtain near-optimal solutions for NP-complete optimization problems.

The most important application of formal language theory to computer science is the
use of grammars to specify the syntax of programming languages. A course with the focus
of using formal techniques to define programming languages and develop efficient parsing
strategies begins with the introduction of context-free grammars to generate languages
and finite automata to recognize patterns. After the introduction to language definition,
Chapters 18-20 examine the properties of LL and LR grammars and deterministic parsing
of languages defined by these types of grammars.

Exercises

Mastering the theoretical foundations of computer science is not a spectator sport; only by
solving problems and examining the proofs of the major results can one fully comprehend
the concepts, the algorithms, and the subtleties of the theory. That is, understanding the “big
picture” requires many small steps. To help accomplish this, each chapter ends with a set of
exercises. The exercises range from constructing simple examples of the topics introduced
in the chapter to extending the theory.

Several exercises in each set are marked with a star. A problem is starred because it
may be more challenging than the others on the same topic, more theoretical in nature, or
may be particularly unique and interesting.

Notation

The theory of computer science is a mathematical examination of the capabilities and lim-
itations of effective computation. As with any formal analysis, the notation must provide
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precise and unambiguous definitions of the concepts, structures, and operations. The fol-
lowing notational conventions will be used throughout the book:

Items Description Examples
Elements and strings Italic lowercase letters from the beginning a, b, abc

of the alphabet
Functions Italic lowercase letters f.8h
Sets and relations Capital letters X, Y,Z,2,T
Grammars Capital letters G,G,, G,
Variables of grammars Italic capital letters A B,C,S
Abstract machines Capital letters M, M, M,

The use of roman letters for sets and mathematical structures is somewhat nonstandard
but was chosen to make the components of a structure visually identifiable. For example, a
context-free grammar is a structure G = (£, V, P, §). From the fonts alone it can be seen
that G consists of three sets and a variable S.

A three-part numbering system is used throughout the book; a reference is given by
chapter, section, and item. One numbering sequence records definitions, lemmas, theorems,
corollaries, and algorithms. A second sequence is used to identify examples. Tables, figures,
and exercises are referenced simply by chapter and number.

The end of a proof is marked by M and the end of an example by 0. An index of symbols,
including descriptions and the numbers of the pages on which they are introduced, is given
in Appendix I.

Supplements

Solutions to selected exercises are available only to qualified instructors. Please contact your
local Addison-Wesley sales representative or send email to aw.cse @aw.com for information
on how to access them.
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