A
AA4

PEARSON

"Addison
esley

-
el €

e

LANGUAGES

AND MACHINES

AN INTRODUCTION TO THE THEORY
OF COMPUTER SCIENCE Third Edition

iE -5 5 *Il’ EE(%?»HE)

g DECE 3 Tt

Thomas A. Sudkamp &

oPEARSON,’

LA W AL

REVENHE EIELEMRT] GEEIRRO

Languages and Machines

An Introduction to the Theory of Computer Science -
D Third Edition : U

EE S
WHARZ R S

A

EECPNE i
It

v

English reprint edition copyright © 2007 by PEARSON EDUCATION ASIA LIMITED and TSINGHUA

UNIVERSITY PRESS.
Original English language title from Proprietor’s edition of the Work.

Original English language title: Languages and Machines: An Introduction to the Theory of Computer -
Science, 3E by Thomas A. Sudkamp, Copyright © 2007
All Rights Reserved.

Published by arrangement’ W1th the or1g1nal pubhsher Pearson Education, Inc., publishing as Addison-Wesley.

This edition is authorized for sale and distribution only in the People’s Republic of China (excluding the
Special Administrative Region of Hong Kong, Macao SAR and Taiwan).
EEHER B Pearson Educat1on(ii‘é$5('§ Hﬂﬁﬁ%)‘&ﬁ%%-ﬁﬁitﬂﬁm‘i HIRAT -

For sale and dlstnbutlon in the People’s Republic of China
exclusively (except Taiwan, Hong Kong SAR and Macao SAR).

RFrEARS ﬂ@ﬁﬂCﬁ@%¢@§%\@ﬂﬁﬂﬁﬁEﬂ
FEAEMRX) HELIT.

jtf?:ﬁiJﬁﬁH%1’EﬁAﬁﬂia% B 01-2005-3987 &

AHEH MM A Pearson Education (&4 A HARE H) AP IRE, %h%‘t’%‘?’ SHHE.
MALERE, BRuLsR. SEERBIE: 010-62782989 13501256678 13801310933

BB EML% B (CIP) #iE

EBEEVLES: HENRS#HES S8 5 3 lR=Languages and Machines, 3e: 3 / (&) Witk
(Sudkamp, T.A.) . —db5T: BHERKZEHRLE, 2007.7
ISBN 978-7-302-15172-2

I. & 1. - L HEHRZE- V. TP3
b E A B 450 CIP $UREEE (2007) 4 069504 2

C BEREE: BRI
RAEEDH): ZAE

M & WA M fhe JERREERESTIAE
http://www.tup.com.cn B8 4&: 100084
iEH: 010-6277 0175 : EFRRE: 010-6277 6969

L ZT T B FIHERENRI

=& TR B AR
FERIEREILERITH

185X230 EM3k. 42.5

200747 BB VIR 200747 A5 1 RERRI
1~3000

fr: 69.00 7T

-

2
S5 25 Ok D Db

FES&EHMERS

1

ABMELELFAE. K. BRI, ﬁuﬁ MBTEESE AR RS, HS5HEKE R AR
Rk, BEAAIE:. 01062770177 #3103 F=R4E: 019033-01

(dedication) — (parents)
(parents) — (first name) (last name)
(first name) — Donald | Mary

(last name) — Sudkamp

R B B

BEA 21 4, HRARENRT. REURGSE DS EMEI. ZFaF
LSRR AA TS WHERERRTMNL, ERRERFFRENS. REH
B, ENEFERRAS HFL, PAZIREEN. BTRESSEFNEMEFR
18, ST INREA R ERINER, H A IELE K (T T E S R A E S E AR # 0 -
BHERLEHRAEAN 1996 E£7746, SESIZFZLRAT SR, BEOLKRT “R¥EH
SHHEAS GBERD” S—RFIBIHES, ZHEA LSRN, BA 21 it
4, BRINAEARERSHUTEMERRSHVE, ECHFOEMLE, #—B5 KEl
WA, BZEEBFART, — B ET R E X MEER FRE R AR AFFRAET
HHEE 1 RIME S BE LB, HRAE RN E EINE LM R G
ERRRO”, DASRIERE . RPN EE KRB R AR BM W BRENERLRBERAN. B
FEEATR. BEBRERIEREESTENHEFORB LM, URRIEE <K%t
ANEEESELEMRY B MEAEF, FEAERMENTE.

BRI AR

The objective of the third edition of Languages and Machines: An Introduction to the
Theory of Computer Science remains the same as that of the first two editions, to provide
a mathematically sound presentation of the theory of computer science at a level suitable
for junior- and senior-level computer science majors. The impetus for the third edition was
threefold: to enhance the presentation by providing additional motivation and examples; to
expand the selection of topics, particularly in the area of computational complexity; and to
provide additional flexibility to the instructor in the design of an introductory course in the
theory of computer science.

While many applications-oriented students question the importance of studying the-
oretical foundations, it is this subject that addresses the “big picture" issues of computer
science. When today’s programming languages and computer architectures are obsolete
and solutions have been found for problems currently of interest, the questions considered
in this book will still be relevant. What types of patterns can be algorithmically detected?
How can languages be formally defined and analyzed? What are the inherent capabilities
and limitations of algorithmic computation? What problems have solutions that require so
much time or memory that they are realistically intractable? How do we compare the relative
difficulty of two problems? Each of these questions will be addressed in this text.

Organization

Since most computer science students at the undergraduate level have little or no background
in abstract mathematics, the presentation is intended not only to introduce the foundations
of computer science but also to increase the student’s mathematical sophistication. This
is accomplished by a rigorous presentation of the concepts and theorems of the subject
accompanied by a generous supply of examples. Each chapter ends with a set of exercises
that reinforces and augments the material covered in the chapter.

To make the topics accessible, no special mathematical prerequisites are assumed.
Instead, Chapter 1 introduces the mathematical tools of the theory of computing: naive set

Xiii

XiV Preface

theory, recursive definitions, and proof by mathematical induction. With the exception of
the specialized topics in Sections 1.3 and 1.4, Chapters 1 and 2 provide background material
- that will be used throughout the text. Section 1.3 introduces cardinality and diagonalization,
which are used in the counting arguments that establish the existence of undecidable
languages and uncomputable functions. Section 1.4 examines the use of self-reference in
proofs by contradiction. This technique is used in undecidability proofs, including the proof
that there is no solution to the Halting Problem. For students who have completed a course
in discrete mathematics, most of the material in Chapter 1 can be treated as review.
Recognizing that courses in the foundations of computing may emphasize different
topics, the presentation and prerequisite structure of this book have been designed to permit
a course to investigate particular topics in depth while providing the ability to augment
the primary topics with material that introduces and explores the breadth of computer
science theory. The core material for courses that focus on a classical presentation of formal
and automata language theory, on computability and undecidability, on computational
complexity, and on formal languages as the foundation for programming language definition
and compiler design are given in the following table. A star next to a section indicates that
the section may be omitted without affecting the continuity of the presentation. A starred
section usually contains the presentation of an application, the introduction of a related
topic, or a detailed proof of an advanced result in the subject.

Formal Languages

Formal Language Computability Computational for Programming
and Automata Theory Theory Complexity Languages

Chap. 1: 1-3, 6-8 Chap. 1: all Chap. 1: all Chap. 1: 1-3, 6-8
Chap. 2: 1-3, 4* Chap. 2: 1-3, 4* Chap. 2: 1-3, 4* Chap. 2: 14
Chap. 3: 1-3, 4* Chap. 5: 1-6, 7* Chap. 5: 14, 5-7* Chap. 3: 14
Chap. 4: 1-5, 6%, 7 Chap. 8: 1-7, 8* Chap. 8: 1-7, 8* Chap. 4: 1-5, 6*, 7
Chap. 5: 1-6, 7* Chap. 9: 1-5, 6* Chap. 9: 1-4, 5-6* Chap. 5: 1-6, 7*
Chap. 6: 1-5, 6* Chap. 10: 1 Chap. 11: 1-4, 5* Chap. 7: 1-3, 4-5*
Chap. 7: 1-5 Chap. 11: all Chap. 14: 1-4, 5-7* Chap. 18: all
Chap. 8: 1-7, 8* Chap. 12: all Chap. 15: all Chap. 19: all
Chap. 9: 1-5, 6* Chap. 13: all Chap. 16: 1-6, 7* Chap. 20: all
Chap. 10: all Chap. 17: all

The classical presentation of formal language and automata theory examines the rela-
tionships between the grammars and abstract machines of the Chomsky hierarchy. The com-
putational properties of deterministic finite automata, pushdown automata, linear-bounded
automata, and Turing machines are examined. The analysis of the computational power of :
abstract machines culminates by establishing the equivalence of language recognition by
Turing machines and language generation by unrestricted grammars. .

Preface XV

Computability theory examines the capabilities and limitations of algorithmic prob-
lem solving. The coverage of computability includes decidability and the Church-Turing
Thesis, which is supported by the establishment of the equivalence of Turing computabil-
ity and p-recursive functions. A diagonalization argument is used to show that the Halting
Problem for Turing machines is unsolvable. Problem reduction is then used to establish the
undecidability of a number of questions on the capabilities of algorithmic computation.

The study of computational complexity begins by considering methods for measuring
the resources required by a computation. The Turing machine is selected as the framework
for the assessment of complexity, and time and space complexity are measured by the
number of transitions and amount of memory used in Turing machine computations. The
class P of problems that are solvable by deterministic Turing machines in polynomial time
is identified as the set problems that have efficient algorithmic solutions. The class NP and
the theory of NP-completeness are then introduced. Approximation algorithms are used to
obtain near-optimal solutions for NP-complete optimization problems.

The most important application of formal language theory to computer science is the
use of grammars to specify the syntax of programming languages. A course with the focus
of using formal techniques to define programming languages and develop efficient parsing
strategies begins with the introduction of context-free grammars to generate languages
and finite automata to recognize patterns. After the introduction to language definition,
Chapters 18-20 examine the properties of LL and LR grammars and deterministic parsing
of languages defined by these types of grammars.

Exercises

Mastering the theoretical foundations of computer science is not a spectator sport; only by
solving problems and examining the proofs of the major results can one fully comprehend
the concepts, the algorithms, and the subtleties of the theory. That is, understanding the “big
picture” requires many small steps. To help accomplish this, each chapter ends with a set of
exercises. The exercises range from constructing simple examples of the topics introduced
in the chapter to extending the theory.

Several exercises in each set are marked with a star. A problem is starred because it
may be more challenging than the others on the same topic, more theoretical in nature, or
may be particularly unique and interesting.

Notation

The theory of computer science is a mathematical examination of the capabilities and lim-
itations of effective computation. As with any formal analysis, the notation must provide

XVi Preface

precise and unambiguous definitions of the concepts, structures, and operations. The fol-
lowing notational conventions will be used throughout the book:

Items Description Examples
Elements and strings Italic lowercase letters from the beginning a, b, abc

of the alphabet
Functions Italic lowercase letters f.8h
Sets and relations Capital letters X, Y,Z,2,T
Grammars Capital letters G,G,, G,
Variables of grammars Italic capital letters A B,C,S
Abstract machines Capital letters M, M, M,

The use of roman letters for sets and mathematical structures is somewhat nonstandard
but was chosen to make the components of a structure visually identifiable. For example, a
context-free grammar is a structure G = (£, V, P, §). From the fonts alone it can be seen
that G consists of three sets and a variable S.

A three-part numbering system is used throughout the book; a reference is given by
chapter, section, and item. One numbering sequence records definitions, lemmas, theorems,
corollaries, and algorithms. A second sequence is used to identify examples. Tables, figures,
and exercises are referenced simply by chapter and number.

The end of a proof is marked by M and the end of an example by 0. An index of symbols,
including descriptions and the numbers of the pages on which they are introduced, is given
in Appendix I.

Supplements

Solutions to selected exercises are available only to qualified instructors. Please contact your
local Addison-Wesley sales representative or send email to aw.cse @aw.com for information
on how to access them.

Acknowledgments

First and foremost, I would like to thank my wife Janice and daughter Elizabeth, whose
kindness, patience, and consideration made the successful completion of this book possible.
I would also like to thank my colleagues and friends at the Institut de Recherche en
Informatique de Toulouse, Université Paul Sabatier, Toulouse, France. The first draft of
this revision was completed while I was visiting IRIT during the summer of 2004. A special
thanks to Didier Dubois and Henri Prade for their generosity and hospitality.

The number of people who have made contributions to this book increases with each
edition. I extend my sincere appreciation to all the students and professors who have

Preface XVii

used this book and have sent me critiques, criticisms, corrections, and suggestions for
improvement. Many of the suggestions have been incorporated into this edition. Thank
you for taking the time to send your comments and please continue to do so. My email
address is tsudkamp @cs.wright.edu. i

This book, in its various editions, has been reviewed by a number of distinguished com-
puter scientists including Professors Andrew Astromoff (San Francisco State University),
Dan Cooke (University of Texas-El Paso), Thomas Fernandez, Sandeep Gupta (Arizona
State University), Raymond Gumb (University of Massachusetts-Lowell), Thomas F. Hain
(University of South Alabama), Michael Harrison (University of California at Berkeley),
David Hemmendinger (Union College), Steve Homer (Boston University), Dan Jurca (Cal-
ifornia State University-Hayward), Klaus Kaiser (University of Houston), C. Kim (Uni-
versity of Oklahoma), D. T. Lee (Northwestern University), Karen Lemone (Worcester
Polytechnic Institute), C. L. Liu (University of Illinois at Urbana-Champaign), Richard
J. Lorentz (California State University-Northridge), Fletcher R. Norris (The University
of North Carolina at Wilmington), Jeffery Shallit (University of Waterloo), Frank Stomp
(Wayne State University), William Ward (University of South Alabama), Dan Ventura
(Brigham Young University), Charles Wallace (Michigan Technological University), Ken-
neth Williams (Western Michigan University), and Hsu-Chun Yen (Iowa State University).
Thank you all.

I would also like to gratefully acknowledge the assistance received from the people at
the Computer Science Education Division of the Addison-Wesley Publishing Company and
Windfall Software who were members of the team that successfully completed this project.

Thomas A. Sudkamp
Dayton, Ohio

Preface

Introduction

Foundations
Chapter 1
Mathematical Preliminaries
144 Set Theory 8
1.2 Cartesian Product, Relations, and Functions
1.3 Equivalence Relations 14
1.4 Countable and Uncountable Sets 16
1.5 Diagonalization and Self-Reference 21
1.6 Recursive Definitions 23
1.7 Mathematical Induction 27
1.8 Directed Graphs 32
Exercises 36
Bibliographic Notes 40
Chapter 2
Languages
2.1 Strings and Languages 42
2.2 Finite Specification of Languages 45
2.3 Regular Sets and Expressions 49
2.4 Regular Expressions and Text Searching

Exercises 58
Bibliographic Notes 61

11

41

Vi

Contents

Grammars, Automata, and Languages

Chapter 3
Context-Free Grammars

3.1 Context-Free Grammars and Languages 68

3.2 Examples of Grammars and Languages 76

3.3 Regular Grammars 81

3.4 Verifying Grammars 83

3.5 Leftmost Derivations and Ambiguity 89

3.6 Context-Free Grammars and Programming Language Definition
Exercises 97
Bibliographic Notes 102

Chapter 4

Normal Forms for Context-Free Grammars

4.1 Grammar Transformations 104
4.2 Elimination of A-Rules 106
4.3 Elimination of Chain Rules 113
44 Useless Symbols 116
4.5 Chomsky Normal Form 121
4.6 The CYK Algorithm 124
4.7 Removal of Direct Left Recursion 129
4.8 Greibach Normal Form 131
Exercises 138
Bibliographic Notes 143
Chapter 5
Finite Automata
5.1 A Finite-State Machine 145
5.2 Deterministic Finite Automata 147
5.3 State Diagrams and Examples 151
54 Nondeterministic Finite Automata 159
5.5 A-Transitions 165
5.6 Removing Nondeterminism 170
5.7 DFA Minimization 178

Exercises 184
Bibliographic Notes 190

93

65

103

145

Chapter 6
Properties of Regular Languages

6.1 Finite-State Acceptance of Regular Languages 191
6.2 Expression Graphs 193
6.3 Regular Grammars and Finite Automata 196
6.4 Closure Properties of Regular Languages 200
6.5 A Nonregular Language 203
6.6 The Pumping Lemma for Regular Languages 205
6.7 The Myhill-Nerode Theorem 211
Exercises 217
Bibliographic Notes 220
Chapter 7
Pushdown Automata and Context-Free Languages
7.1 Pushdown Automata 221
7.2 Variations on the PDA Theme 227
7.3 Acceptance of Context-Free Languages 232
7.4 The Pumping Lemma for Context-Free Languages
7.5 Closure Properties of Context-Free Languages 243

Exercises 247
Bibliographic Notes 251

PART Il

Computability

Chapter 8
“Turing Machines

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

The Standard Turing Machine 255
Turing Machines as Language Acceptors
Alternative Acceptance Criteria 262
Multitrack Machines =~ 263

Two-Way Tape Machines 265

Multitape Machines 268
Nondeterministic Turing Machines 274
Turing Machines as Language Enumerators
Exercises 288

Bibliographic Notes 293

259

282

239

Contents

vii

191

221

255

viii Contents
Chapter 9
Turing Computable Functions 295
9.1 Computation of Functions 295
9.2 Numeric Computation 299 :
9.3 Sequential Operation of Turing Machines 301
9.4 Composition of Functions 308
9.5 Uncomputable Functions 312
9.6 Toward a Programming Language 313
Exercises 320
Bibliographic Notes 323
Chapter 10
The Chomsky Hierarchy 325
10.1 Unrestricted Grammars 325
102 Context-Sensitive Grammars 332
10.3 Linear-Bounded Automata 334
104 The Chomsky Hierarchy 338
Exercises 339 :
Bibliographic Notes 341
Chapter 11
Decision Problems and the Church-Turing Thesis 343
11.1 Representation of Decision Problems 344
112 Decision Problems and Recursive Languages 346
11.3 Problem Reduction 348
114 The Church-Turing Thesis 352
11.5 A Universal Machine 354
Exercises 358
Bibliographic Notes 360
Chapter 12
Undecidability 361
12.1 The Halting Problem for Turing Machines 362
122 Problem Reduction and Undecidability ~ 365
12.3 Additional Halting Problem Reductions 368
124 Rice’s Theorem 371
12.5 An Unsolvable Word Problem 373
12.6 The Post Correspondence Problem 377

Contents iX

12.7 Undecidable Problems in Context-Free Grammars 382
Exercises 386
Bibliographic Notes 388

Chapter 13
Mu-Recursive Functions 389

13.1 Primitive Recursive Functions 389
13.2 Some Primitive Recursive Functions 394
13.3 Bounded Operators 398
13.4 Division Functions 404
13.5 Godel Numbering and Course-of-Values Recursion 406
13.6 Computable Partial Functions 410
13.7 Turing Computability and Mu-Recursive Functions 415
13.8 The Church-Turing Thesis Revisited 421
Exercises 424
Bibliographic Notes 430

Computational Complexity

Chapter 14
Time Complexity 433

14.1 Measurement of Complexity 434
14.2 Rates of Growth 436
14.3 Time Complexity of a Turing Machine 442
144 Complexity and Turing Machine Variations 446
14.5 Linear Speedup 448
14.6 Properties of Time Complexity of Languages 451
14.7 Simulation of Computer Computations 458
Exercises 462
Bibliographic Notes 464

Chapter 15
P, NP, and Cook’s Theorem 465

15.1 Time Complexity of Nondeterministic Turing Machines 466
152 The Classes P and NP 468

153 Problem Representation and Complexity 469

15.4 Decision Problems and Complexity Classes 472

15.5 The Hamiltonian Circuit Problem 474

X Contents

15.6 Polynomial-Time Reduction 477
157 i P=NP2 479
15.8 The Satisfiability Problem 481
15.9 Complexity Class Relations 492
Exercises 493
Bibliographic Notes 496

Chapter 16
NP-Complete Problems 497

16.1 Reduction and NP-Complete Problems 497
16.2 The 3-Satisfiability Problem 498
16.3 Reductions from 3-Satisfiability 500
16.4 Reduction and Subproblems 513
16.5 Optimization Problems 517
16.6 Approximation Algorithms 519
16.7 Approximation Schemes 523
Exercises 526
Bibliographic Notes 528

Chapter 17
Additional Complexity Classes 529

17.1 Derivative Complexity Classes 529
17.2 Space Complexity 532
17.3 Relations between Space and Time Complexity 535
17.4 P-Space, NP-Space, and Savitch’s Theorem 540
17.5 P-Space Completeness 544
17.6 An Intractable Problem 548

Exercises 550

Bibliographic Notes 551

Deterministic Parsing

Chapter 18
Parsing: An Introduction 555

18.1 The Graph of a Grammar 555

18.2 A Top-Down Parser 557

18.3 Reductions and Bottom-Up Parsing 561
184 A Bottom-Up Parser 563 .

18.5 Parsing and Compiling 567
Exercises 568
Bibliographic Notes 569

Chapter 19

LL(k) Grammars

19.1
19.2
19.3
19.4
19.5
19.6
19.7
19.8

Lookahead in Context-Free Grammars
FIRST, FOLLOW, and Lookahead Sets

Strong LL(k) Grammars 579
Construction of FIRST; Sets 580

Construction of FOLLOW,, Sets 583

A Strong LL(1) Grammar 585
A Strong LL(k) Parser 587
LL(k) Grammars 589
Exercises 591

Bibliographic Notes 593

Chapter 20
LR(k) Grammars

20.1
20.2
20.3
204
20.5

LR(0) Contexts 595

An LR(0) Parser 599

The LR(0) Machine 601
Acceptance by the LR(0) Machine
LR(1) Grammars 612
Exercises 620

Bibliographic Notes 621

Appendix |
Index of Notation

Appendix Il
The Greek Alphabet

Appendix Il
The ASCII Character Set

Appendix IV
Backus-Naur Form Definition of Java

Bibliography

Subject Index

606

Contents

Xi

571

595

623

627

629

631

641
649

