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Preface

The 500th anniversary of the University of Uppsala was celebrated throughout
the year 1977 primarily by conducting a large number of symposia in various disci-
plines. The contribution of the Uppsala Quantum Chemistry Group to this program
was a symposium held from August 31 to September 4, 1977 with the theme,
“Quantum Chemistry—A Scientific Melting Pot.”

This symposium attracted both quantum chemists and a number of specialists in
neighboring fields such as astronomy, molecular spectroscopy, solid state physics,
surface physics, quantum biology; and, last but not least, it included a number of
philosophers who have made important contributions to the epistemology of quantum
mechanics. This was particularly fitting for a scientific program commemorating
another anniversary: Quantum Chemistry’s first 50 years.

The present supplement to the International Journal of Quantum Chemistry
contains papers submitted in connection with the symposium. They have been arranged
essentially according to the order of the sessions, which was as follows: Philosophical
Aspects of Quantum Chemistry; Some Current Methods of Quantum Chemistry; Time
Dependence; Some Basic Concepts in Quantum Chemistry; Interaction between
Quantum Chemistry and Neighboring Fields; and Biology and Quantum
Chemistry.

We would like to express our deep gratitude to the Nobel Institute in Physics, The
Swedish Natural Sciences Research Council, and the University of Uppsala for the
financial support that made this symposium possible.

PER-OLOV LOWDIN
JEAN-Louis CALAIS
OSVALDO GOSCINSKI
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Quantum Mechanics and Measurement

MARIO BUNGE
Foundations and Philosophy of Science Unit, McGill University, Montreal H3A 1W 7, Canada

Abstract

The role of the apparatus and the observer in the foundations of elementary quantum mechanics
is examined. To this end some of the typical formulas of existing theory are analyzed: the
Schrodinger equation, the eigenvalues equation, the Born principle, and the Heisenberg inequalities.
No variables representing either instruments or observers are found in the above formulas; they are
completely general and concern exclusively a microentity in an unspecified external field.

Next the quantum theories of measurement and their relevance to the question of determinism
are analyzed. It is shown that there can be no purely quantum-mechanical theory of measurement
because of the macroscopic nature of measuring instruments. It is also shown that the existing
theories are not testable, hence not scientific in the usual sense.

The general conclusion is that the interpretation of quantum mechanics in terms of measurement
operations, i.e., the Copenhagen interpretation, is inconsistent with the mathematical formalism of
the theory. An alternative interpretation, in terms of exclusively physical entities and properties, is
advanced and discussed. Unlike the former interpretation, the alternative one complies with the
requirement of objectivity.

1. Introduction

Quantum mechanics and quantum electrodynamics were created during the
heyday of logical empiricism (or positivism). This philosophy is phenomenalist
and operationalist: it holds that it makes sense to speak of observations or
measurements only; that science does not study things in themselves but
phenomena, i.e., whatever facts appear to some human observer; and that every
scientific concept ought to be defined in terms of scientific operations such as
weighing and computing. The holy writ of the new credo was Bridgman’s
popular book [1].

Logical empiricism was not just one more philosophical doctrine, it was the
scientist’s philosophy between the two world wars. Therefore it was inevitable
that this philosophy should find its way into the very foundations of the quantum
theories. One result of this symbiosis is that we are still debating such foun-
dations with ideological fervor. Another is that the philosophically naive phy-
sicist, as well as the scientifically naive philosopher, tend to accept the positivist
philosophy inherent in the textbook formulations of the quantum theories more
gullibly than anything else. And yet that philosophy goes against the grain of
physics, which is supposed to account for the physical world in strictly physical
terms rather than in terms of human operations.

It is of course possible to dissociate the quantum theories from logical
empiricism. The advantage of such a divorce is that it frees physics from the
subjectivist, hence nonphysical, traits of logical empiricism [2-3]. The most
general and rigorous way of separating the scientific grain from the philosophical

© 1978 by John Wiley & Sons, Inc. 0020-7608/77/1012-0001$01.00
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chaff of a theory is to axiomatize it in the most parsimonious possible way, i.e.,
without reference to things, events or procedures that have no counterpart in the
mathematical formalism. For example, if a certain property of a physical system
is the same relative to all reference frames of a certain kind, we just say so,
instead of stating that the property looks the same to all observers, first, because
a physical theory is not about observers; second, because the property in ques-
tion may not be observable; third, because—as any psychologist will attest—one
and the same stimulus may be perceived differently by different observers and
even by one and the same observer when in different internal states. In short, if
we wish to uncover the genuine referents of a scientific theory without being
misled by any preconceived philosophy, we had better axiomatize the theory.

The axiomatize-and-cleanse operation has been performed on a number of
physical theories, among them the two relativities and elementary quantum
mechanics [3]. However, the quickest and pedagogically most effective way of
eliminating nonphysical elements from a physical theory is to analyze the struc-
ture of some typical concepts and formulas of the theory and show that they
warrant no reference to extraphysical entities. This I propose to do in the present
paper in the case of elementary quantum mechanics.

2. The Phenomenalist Thesis

Most textbooks on quantum mechanics adopt, and most physicists pay at
least lip service to, the so-called Copenhagen interpretation, proposed by Bohr
and others [4-9]. The nucleus of this doctrine is the following

Phenomenalist Thesis

The physical object has no existence independent from the subject of know-
ledge or observer. What does exist is a sort of sealed unit composed by the
observer, his means of observation, and the observed object. The distinction
between the three components of this system is not unambiguous and objective
but is left to the observer, who may merge object and apparatus or else regard
the latter as a continuation of himself. Consequently every statement about an
object must also refer to the way of observing it. Quantum mechanics complies
by design with this requirement: every formula of it concerns some experimental
situation.

The phenomenalist thesis looks plausible in the case of experimental physics,
since every experimentalist deals, in fact, with some object assisted by obser-
vation or instruments of measurement. However, the experimenter strives to
find out what part of the behavior of his object is an artifact, i.e., a result of his
intervention. For example, he will avoid direct contact between his own body
and the object when measuring the temperature of the latter.

Of course every statement made by the experimental physicist will make
some reference to the means and the technique of observation or measurement.
However this is not because the physicist conjures up all the events he observes.
On the contrary, his reference to the mode of observation is intended to reassure
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his readers, persuading them that things are really thus and not simply
appearances or phenomena that would disappear with a different observer or a
different technique. In sum, the experimenter knows that his actions could
disturb the object and precisely because of this he tries to minimize such a
perturbation or at least to correct for it with the help of theory in order to supply
objective results, i.e., results that are observer-invariant. In other words, the
experimenter, regardless of his explicit philosophy, behaves as an objectivist. If
he did not he would be regarded as incompetent.

Consequently phenomenalism is false in the domain of experimental physics.
However, the defenders of the Copenhagen interpretation claim that it holds not
only in that domain but also in theoretical physics: in fact they demand that
every theoretical formula be read in terms of observation or measurement
operations. Let us see whether this is possible. To this end we shall examine a
few typical and basic formulas of elementary quantum mechanics.

3. The Schrodinger Equation

The Schrodinger equation, in some form or other, is one of the two basic law
statements of quantum mechanics. Hence it is employed in the study of the
constitution and evolution of any microphysical entity. Let us examine it in the
simplest case, which is that of a structureless thing of mass m and electric charge
e in an external macroscopic field represented by a four vector potential (A, A).
In this case the equation is

oy

w2V _
i > Hy (1)
where
1 e \?2 h
=—|p—— + == 2
2m (p cA) eAo, p iV (2)

In the absence of an external field, A, = A =0, and the equation reduces to

2

ihi—l‘tb= —;—mvzw (3)
whose elementary solution is of the form
U(x, 1)=u(x)- e E"" EcR 4)
where the amplitude u satisfies the time-independent equation
Eu=—(h*/2m)V’u (5)

A particular solution of this last equation is
u(x)=a cos (kx+b) (6)

where a, b, and k are real numbers. The corresponding value of the energy is
E=#’k*/2m.
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No matter how hard and long you stare at the above well known formulas
you won’t detect any functions concerning measurement apparatus, let alone
observers. That is, both H and ¢ refer exclusively to the microentity in question
(e.g., an electron) immersed in an external field that may well be nil. The
mathematical formalism does not tolerate the smuggling in of any apparatus or
observers. If still in doubt draw the list of the basic variables and constants
occurring in the Schrodinger equation:

Symbol Concept Referent

x Point in space Space

t Instant of time Time

m Mass of particle Particle

e Charge of particle Particle

D Momentum of particle Particle

(Ag, A) Four-potential External field
h Planck's constant —

Consider next the case of an electron in the electrostatic field of a proton, and
model the latter as a classical point particle. In this case, we set Ay = ez/ rnbA=0
in Eq. (2), where r is the distance from the proton. The state function ¢ is best
expressed as a function of the spherical coordinates with center at the proton.
And the formula for the discrete energy levels is E, =—k/n*, where n is a
natural number and k the energy of the ground state of the system (n = 1).

Nor in this case is it permissible to interpret the results of the calculations in
terms of observations, even though the latter are, of course, indispensable to put
some of the formulas to the test. In fact, the above formulas contain no features
of apparatus or observers: they concern solely an arbitrary hydrogen atom. And
this matches the experimental situation, since the spectroscopic measurements
that allow us to check the formula for the discrete energy levels of the hydrogen
atom do not exert the least influence upon the atoms that emit the light that is
being analyzed. For example, the hydrogen atoms in the sun radiate without our
permission and without being affected by terrestrial spectrographs. The observer
restricts himself to analyzing that light, so that his operations do not influence
the emission process. The same holds, of course, for all atoms and molecules:
their properties are not explained by the actions of observers. Rather on the
contrary, in order to understand the behavior of living beings, in particular
physicists, the biologist makes use of physics and, in particular, of quantum
mechanics.

Of course one could account for the interaction between a microentity and a
measurement apparatus if one wanted to. But then one would have to refor-
mulate the problem da capo. In fact the referent would no longer be a free
object, as in the case of Eq. (3), nor even an object subjected to a fixed external
field that is not influenced by the former, as in the general case of Eq. (2).
Instead, the referent would be a system of two interacting components: a
microentity and a measurement device. This new system would be represented
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by a Hamiltonian H that would contain the coordinates and momenta of the two
components. We would be facing a different problem altogether. But even in this
case it would constitute a physical problem with no reference to observers. We
shall come back to this matter in Section 7.

In summary, both the experimentalist and the theorist study things in them-
selves, such as they exist in nature or in the laboratory; they leave the study of
physicists to scientists in other fields, such as biology, psychology, sociology, and
operations research. Hence the physicist in his daily work, be it experimental or
theoretical, forgets all about the Copenhagen interaction of quantum mechanics.
He remembers it only when teaching the general principles of the theory or
when philosophizing about them—unless of course his philosophy happens to
match his physics.

4. Eigenvalues

A second basic law statement of quantum mechanics is the eigenvalue
equation of an arbitrary operator representing a dynamical variable (or rather
property)}—usually misnamed an ‘“observable.” Let A,, be an operator
representing a property A. It is postulated that A, satisfies an equation of the
form

Aopli = Al (7)

where u; is the kth eigenfunction and a; the corresponding eigenvalue of Ap.
(We need not require that A,, be Hermitian but, for the sake of simplicity, we
assume that the eigenvalues are not degenerate.) The simplest case is that of the
linear momentum, represented by po, = (f/i)V. Its eigenfunctions are e™*, where
k is an ordered triple of reals and the corresponding momentum eigenvalues are
pr = hk. Another example is Eq. (5) which represents the eigenfunctions and
eigenvalues of the energy of a free object in a stationary state.

Let us restrict the discussion to the eigenvalues ay, because it may be argued
that the eigenfunctions u; are only mathematical auxiliaries without any physical
meaning. According to the Copenhagen interpretation, ax is one of the values
that an observer is bound to find when measuring the property A with a suitable
instrument—of any kind. However, Eq. (7) makes no reference whatever to
observers, instruments, measurement techniques, or measurement operations.
The only interpretation Eq. (7) tolerates is a strict or literal one, namely, that a
is one of the possible values of A—whether or not we happen to measure it.

Moreover the Copenhagen interpretation of Eq. (7) is at variance with
experimental physics, since the results of any precision measurement depend on
the measurement method and are rarely exact. (They can be accurate only if the
eigenvalues are denumerable and widely separated.) In fact, in general a
measured value of A will actually be an interval, namely

meas A =ajt g (8)

Here aj is the arithmetical mean of a set of measured values and & the
corresponding relative error, characteristic of the measurement method as well
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as of k. As a rule the central measured value aj differs from the calculated value
ag.

If the Copenhagen interpretation of eigenvalues were taken seriously it
would be possible to discontinue all the research projects devoted to the deter-
mination of the eigenvalues of dynamical variables, since they would be given a
priori and accurately by Eq. (7). Fortunately for experimental physicists, that
interpretation has no basis in the formulas themselves; it is a philosophical
appendix. If still not convinced, take a second look at any eigenvalues equation
and try to identify any variables that might be interpreted as representing some
features of an experimental device or even of a physicist in charge of such a set
up. You won’t find them because they are not there: recall that, by hypothesis,
the A represented by A, is a property of a microentity, not of a macrosystem
including experimental equipment and experimentalists.

5. State Function

The third basic principle we shall examine is Born’s. It is not a law statement
but a semantic postulate, i.e., a hypothesis that assigns a physical interpretation
to the state function ¢. (For the concepts of physical interpretation and semantic
assumption, see Refs. [10] and [11].) We shall formulate it thus: “‘Let ¢, be a
solution of the Schrodinger equation for a physical thing a. Then the probability
that a be at time 7 in the region of space comprised between x and x +Ax equals
|a(x, t)* - Ax.” The probability in question is a property of thing a; more
precisely, it is the probability that a be present in the volume element Ax
situated at the tip of the vector x. There is no reference whatsoever to
measurements—the more so since the principle is so general that it is stated for
arbitrary things with whatever Hamiltonians they may be assigned.

Nevertheless, the Copenhagen version of the principle is different: it states
that |, (x, t)]* - Ax is the probability of finding a in Ax when the position of a is
measured with any position-measurement device whatever. This interpretation
is illegitimate because ¢, does not contain any measuring device coordinates
unless the corresponding Hamiltonian H, contains them. But since the principle
is general we do not care what H, may look like, hence what the corresponding
Y, may be.

Moreover, it should be obvious that the probability of finding a thing at a
given place depends not only on the probability that the thing be there but also
on the accuracy of the search instrument and the skill of its operator. If I look for
a needle in a haystack without the help of my spectacles, I won’t find it. The
probability of finding the needle will increase if I put my glasses on, and will be
considerably enhanced if I avail myself of a magnet. In sum, the operationalist
version of Born’s semantic postulate is mathematically illegitimate and empiric-
ally false.

If the strict or objectivist version of Born’s principle we have proposed is
accepted, then the following important point is easier understood. Classical
mechanics contains a position coordinate X that assigns each particle, in each



