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This book is intended for use as a textbook for a graduate course
in Advanced Quantum Mechanics, and as a reference book for
workers in the field.

Before the subject is presented, a brief but self-contained review
on the foundation of Quantum Mechanics is given. A large part of
this book is devoted to select applications of quantum mechanics,
such as scattering theory, second quantization, superconductive
theory, superfluidity, phase of wave function, path integral and
relativistic quantum mechanics. The selection is guided by the
interest of topic to physicists, its value as an illustration of
calculating techniques, and our personal taste.

To read the book, the reader need basic knowledge of quantum
mechanics, some intuitive feeling for electrodynamics and special

relativity, and a good mathematical knowledge.
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PREFACE

As an advanced study of quantum mechanics, this textbook deals
with topics likely to be encountered in a graduate-level course. The
authors believe there is no material difference between quantum
mechanics and advanced quantum mechanics except that the latter
targets an in-depth study. However, we can see basic differences
between advanced quantum mechanics and quantum statistics and/or
quantum field theory in that the former does not cope with effects of
temperature and quantization of fields.

This book is written for advanced-level students or graduate students
studying physics or the related disciplines. There are all together six
chapters in this book, centering on such topics as relativistic quantum
mechanics, path intergral, scattering theory, second quantization,
superconductive theory, superfluidity as well as the phase of wave
function. Though the textbook adopts a rigorous style, it is easy to read
since no other background knowledge than the basics of quantum
mechanics is required. In addition, the first chapter serves to equip the
reader with the necessary basic knowledge. Throughout the book, the
authors take painstaking efforts to demonstrate the mathematical steps
and intermediate calculations in a thorough way, which will enable the
reader to understand with ease.

We owe our thanks to Prof. Xun Wang for his encouragement,
Prof. L. K. Wang for editing this book and Dr. Wei-Liang Qian for
preparing the LATEX format for the current edition. We would like to
dedicade this book to the 100th annivensary of Fudan University.

Ru-Keng Su
Bin Wang
Apr. 2004.

Fudan University
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Foundation of Quantum Mechanics

1.1 State Vector, Wave Function and Su-
perposition of States

Advanced quantum mechanics is a continuing course of quantum
mechanics at undergraduate level. There is no material difference
between the two courses except that the latter presents a detailed and
insightful introduction to the fundamental concepts and their simple
applications, but the former targets an in-depth study. This book
introduces relativistic quantum mechanics, path integral, scattering
theory, second quantization, superconductive theory, superfluidity as
well as the further study of the phase of wave function. This chapter
evolves from an attempt of a brief review over the basic ideas and
formulae in undergraduate-level quantum mechanics. The details of this
chapter can be found in the usual references of quantum mechanics®.

In classical mechanics, the state of a particle is described in terms
of its coordinate and momentum at some instant of time. The evolution of
the state complys with the Newton equations or the Hamiltonian canonical
equations. With the initial data of coordinate and momentum at a given
instant, the Newton equation of motion can predict the behavior of the
particle at all subsequent instants. In quantum mechanics the prediction
is in pnnciple impossible because the exact coordinate and the
corresponding momentum cannot be given according to the uncertainty

@ For example, Ru-Keng Su, Quantum Mechanics, Second Edition. High Education Press,
2002
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principle.

In quantum mechanics, because of the wave-particle duality, the
state of a quantum system is described in terms of a wave vector in a
Hilbert space. The wave vector can be expressed as a wave function in a
specific representation, i. e. a complete set of basics of the Hilbert
space. For example, the eigenfunctions of coordinate operator x are -
functions

xd(x-x") =x"d(x-x'). (1.1.1)

If we choose the 3-functions to be the basics of the Hilbert space, the
wave function at instant ¢ is expressed as ¢y(x,t). According to the Born
statistic explanation of wave function, the square of the modulus of this
function determines the probability distribution of the values of the
coordinates (u,[; |> dx is the probability that a measurement made on the
system will find the values of coordinates in the element dx of the
configuration space. Since the sum of the probabilities of all possible
values of the system coordinates must be unity, the wave function
Y(x,t) satisfies the normalization condition

[l pdx=1. (1.1.2)

If the integral of |y |® diverges and ¢ cannot be normalized by using
Eq. (1.1.2), |y I* will not determine the absolute values of the
probability of the coordinates, but the ratio of the values of |y |” at two
different points will still determine the relative probability of the
corresponding values of coordinates.

Quantum states follow a general principle of superposition. Suppose
a state with wave function ¢, (gq), where measuring on it leads to a
definite result m, and a state with ¢, (¢) leads to result n. It is assumed
that every linear combination of ¢, and ¢, ,

Y = cahn + i, (1.1.3)

gives a state in which the measurement leads to either result m or n. The

lea !’ le, |”

or .
lea 1+ fe, 1* 7 len® + le, 7

probability of belting result m or n is If

. . .. N .
¢, is an eigenfunction of Hermitian operator F and f; is the

corresponding eigenvalue, then all eigenfunctions of F form a complete
set {1, } in Hilbert space. A wave function ¢ can be expanded into

Advanced Quantum Mechanics
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If we make a measurement of dynamical quantity F in a state with wave
function , we reach the result that the square modulus |c,|* of each
coefficient in Eq.(1.1.4) determines the probability of the
corresponding value f, of the quantity ¥ in a state with ¢ provided that
the wave functions satisfy

jq;’d;dr:l, (1.1.5)

[viw.dr =3, (1.1.6)
and

YlelP=1. (1.1.7)

It is worth noting that the superposition of quantum states in quantum
mechanics is with essentially different nature from that in the classical
theory. The quantum coherence cannot be found in classical mechanics.

1.2 Schrédinger Equation and Its Solutions

In quantum mechanics, as in classical mechanics, a system is
governed by the equation of motion which tells us that the state at one
time determines the state at a later time. In classical mechanics, the
equation of motion is Newton equation. In quantum mechanics,
Schrodinger assumed that the equation of motion for wave function reads

ind Ay =[-Evivenls, a2

where

A 2
A=-Eviuey (1.2.2)
2m

is the Hamilton operator and U(r,¢) is the potential energy. If the
potential energy depends on r alone, we can prove that the wave function
becomes

g(r,t) = ¢g(r)e ™" (1.2.3)

Foundation of Quantum Mechanics
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Eq. (1.2.3) is called stationary state. In this state, the density of Vprobability
does not depend on time

lp(r,e) 12 = ly(r) 1%, (1.2.4)

and the energy has a definite value. Schridinger equation for stationary
state reads

Hy = Ey, (1.2.5)

2
A=-Fvium. (1.2.6)
2m

In principle, the solutions of Schrodinger equation can be obtained for
definite boundary conditions. However, due to mathematical problems,
only a few exact solutions have been found. Examples are given as
follows :

1.2.1 One-dimensional infinite potential well

Considering one-dimension Schrédinger equation with potential

0 (le<a)
U(x) ={ , (1.2.7)

o (|x|=a)

we find that the energy levels and the normalized wave function are

E, = n;Z;§2 C(n=123,00,  (1.2.8)
1 . nw
—sin——(x + a) (l <a)

v - {J(; 2a d . (1.2.9)
0 (|x}=a)

respectively.

1.2.2 One-dimensional harmonic oscillator

2
- fm 4 %—mwzxz, (1.2.10)

where w is the frequency of the oscillation. The corresponding

Advanced Quantum Mechanics



Schrédinger equation is

(_%%d_% +%mwzx2),/,(x) = Ep(x) . (1.2.11)

One can prove that the energy levels and the normalized wave function
are

E, = (n +—;—)kw (n=0,1,2,), (1.2.12)

oy,
h(0) = () e (), (12.13)

where a = vVmw/h and H,(ax) is the Hermit polynomials

H,(£) = (- 1)" dd_gnwe-f")

= (26)" - n(n -1)(26)"?

(n-1)(n-2)(n-3) -
+ 2 31 (2¢)
#oes (- 1B (o) 03], (1.2.14)
[Z]!
/2
[i] = {" (neven) . (1.2.15)
2 (n-1)72 (n odd)
Here is a list of the first few Hermit polynomials
H,(¢) =1, H, () =2,
(1.2.16)

H,(¢) =48 -2, Hy(§) =88 - 124

The energy spectra of linear oscillator can be obtained easily in the

occupation representation. Introducing the creation operator @* and the
annihilation operator &

#=(32) (%---5)
2 , (1.2.17)
& =(59) (& +:-p)

Foundation of Quantum Mechanics 5
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we can rewrite Eq. (1.2.10) into

ﬁzhw({;\*{i+%), (1.2.18)

and prove that the operators @ and 4" satisfy
[a,a"] =1. (1.2.19)

Defining the operator of particle number N as

A

N =4aa, (1.2.20)

the eigenvectors | n) of operator N are
//\>|n>=n|n>, (1.2.21)
where n =0,1,2, --- are the occupied numbers of the corresponding
states |0), [1), [2), - respectively. In occupation representation

{1n)}, we have

&' ln)y = Vn+lln+1)

aln) =ynin-1). (1.2.22)
Combining Eqs. (1.2.18) and (1.2.21), we get

E, =(n+%)hw. (1.2.23)

1.2.3 Central potential

The central potential U only depends on the distance r of the
particle from the center. Spherical coordinates are best adapted to the
problem. The Schridinger equation is

(-;_zvuu(,)).;,(r) = Ep(r) . (1.2.24)
m

We express Eq. (1.2.24) in terms of spherical coordinates

h2
S b G Rt AR R

sin 6 o’ ]d’

Advanced Quantum Mechanics



+U(r)y = Ey . ‘ (1.2.25)
The solution is
Y(r,0,0) =R, (1Y, (8,0), (1.2.26)
where Y,,(8,¢) is the spherical harmonic functions
Y, (6,9) = N, P"(cos@)e™, (1.2.27)

and

_ U= ImDI(2L+1)

No = T+ |m) tar

(1.2.28)

is the normalized constant, and P!"'(cos@) is the associated Lagendre
polynomials. The first few spherical harmonics are listed below

Yo = ——

_~<
1]
S
P
o
s
>

Y, = /;—ﬂsinee’i“’,

Y, = —5;(3 cos’d-1), Y,,, = isin@etﬂa’_

R2n
(1.2.29)

The orthonormalized condition for Y, is

2r .m
J, [, ¥i(0.0) Y0 (6.0)sin0d0d ¢ = 8,5, (1.2.30)
If U(r) is attractive Coulomb potential
U(r) =-=—, (1.2.31)

the radial part R, of solution Eq. (1.2.26) is
Ry(r) = Ne®?8F(-n+1+120+2,¢), (1.2.32)

where

Foundation of Quantum Mechanics
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N = 2 (n+ )
TR DIN(n-I-1)1’

(1.2.33)

2
a, =miz-=0. 529 x 10 °m is the first Bohr radius and F(a,y,£) is

e

the confluent hypergeometric polynomial. The first few radial solutions of
R, (r) are listed below

1, Ry(r) = (£)’”ze-z,/ao

n = a
n =2, Ry(r) = (2—§—)m(2 —ﬁ)e“”“". (1.2.34)
0

a,

- Z 2 Zr -Zr/ag
Ry (r) = (271;) a_o«/ie

The values of principal quantum number n, radial quantum number / and
the magnetic quantum number m are

n=1,2,3,..
1=0,1,2,-,n-1. (1.2.35)
m=0,+1,-, £/

The energy levels of hydrogen read

4
e2 - m.,e

=2 (n=1,23,).  (1.2.36)

" T T 2an’ | 2RA

E

Other cases with exact solutions can be found in ref®.

® S. Flugge, Practical Quantum Mechanics, Spinger-Verlag, 1974
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1.3 QOperafors

The expectation values of dynamic quantity A for a given probability
distribution is defined as the weighted sum

(4) = zk‘lA,‘pk, (1.3.1)

where p, is the corresponding probability.

In quantum mechanics, according to the Bomn statistical
interpretation, | (r,t) |* is proportional to the probability density that
upon a measurement on its position the particle will be found at position
r. Therefore, the expectation value of the position vector can be
expressed by

(r) = [rly(r)|? dr. (1.3.2)

An arbitrary function of r has the expectation value

D)) = [fr) gl dr = [p f(rwdr,  (1.3.3)

where ¢ satisfies the normal condition

f¢'¢dr=1- (1.3.4)

To calculate the expectation value of momentum p, we must find the
probability density that upon a measurement on its momentum that
particle will be found at momentum p in the momentum space.
Performing a Fourier transformation

e(p,t) = j./,(r e EPD dp. (1.3.5)

Q2 h)a/z

the probability density in the momentum space reads |c(p,t) |* and the
expectation value of momentum is

(p) = [ (p,0)pe(p,t)dp . (1.3.6)

Its component of x direction is

Foundation of Quantum Mechanics
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