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Preface

Vorticity is perhaps the most important facet of turbulent fluid flows. This book is
intended to be a comprehensive introduction to the mathematical theory of vorticity
and incompressible flow ranging from elementary introductory material to current
research topics. Although the contents center on mathematical theory, many parts
of the book showcase a modern applied mathematics interaction among rigorous
mathematical theory, numerical, asymptotic, and qualitative simplified modeling, and
physical phenomena. The interested reader can see many examples of this sym-
biotic interaction throughout the book, especially in Chaps. 4-9 and 13. The authors
hope that this point of view will be interesting to mathematicians as well as other
scientists and engineers with interest in the mathematical theory of incompressible
flows.

The first seven chapters comprise material for an introductory graduate course on
vorticity and incompressible flow. Chapters 1 and 2 contain elementary material on
incompressible flow, emphasizing the role of vorticity and vortex dynamics together
with a review of concepts from partial differential equations that are useful elsewhere
in the book. These formulations of the equations of motion for incompressible flow
are utilized in Chaps. 3 and 4 to study the existence of solutions, accumulation of
vorticity, and convergence of numerical approximations through a variety of flexi-
ble mathematical techniques. Chapter 5 involves the interplay between mathematical
theory and numerical or quantitative modeling in the search for singular solutions to
the Eu'er equations. In Chap. 6, the authors discuss vortex methods as numerical pro-
cedures for incompressible lows; here some of the exact solutions from Chaps. I and
2 are utilized as simplified models to study numerical methods and their performance
on unambiguous test problems. Chapter 7 is an introduction 1o the novel equations
for interacting vortex filaments that emerge from careful asymptotic analysis,

The material in the second part of the book can be used for a graduate course on
the theory for weak solutions for incompressible flow with an emphasis on modem
applied mathematics. Chapter 8 is an introduction to the mildest weak solutions such
as patches of vorticity in which there is a complete and elegant mathematical theory.
In contrast, Chap. 9 involves a discussion of subtle theoretical and computational
issues involved with vortex sheets as the most singular weak solutions in two-space
dimensions with practical significance. This chapter also provides a pedagogical intro-
duction to the mathematical material on weak solutions presented in Chaps. 10-12.

Xi



xii Preface

Chapter 13 involves a theoretical and computational study of the one-dimensional
Vlasov--Poisson equations, which serves as a simplified model in which many of the
unresolved issues for weak solutions of the Euler equations can be answered in an
explicit and unambiguous fashion.

This book is a direct outgrowth of several extensive lecture courses by Majda on
these topics at Princeton University during 1985, 1988, 1990, and 1993, and at the
Courant Institute in 1995. This material has been supplemented by research expository
contributions based on both the authors™ work and on other current research.

Andrew Majda would like to thack many former students in these courses who
contributed to the write-up of earlier versions of the notes, especially Dongho Chae,
Richard Dziurzynski, Richard McLaughlin, David Stuart, and Enrique Thomann.
In addition, many friends and scientific collaborators have made explicit or implicit
contributions to the material in this book. They include Tom Beale, Alexandre Chorin,
Peter Constantin, Rupert Klein, and George Majda. Ron DiPerna was a truly brilliant
mathematician and wonderful collaborator who passed away far too early in his life;
it is a privilege to give an exposition of aspects of our joint work in the later chapters
of this book.

We would also like to thank the following people for their contributions to the
development of the manuscript through proofreading and help with the figures and
typesetting: Michael Brenner, Richard Clelland, Diego Cordoba, Weinan E, Pedro
Embid, Andrew Ferrari, Judy Horowitz, Benjamin Jones, Phyllis Kronhaus. Monika
Nitsche, Mary Pugh, Philip Riley, Thomas Witelski, and Yuxi Zheng. We thank Robert
Krasny for providing us with Figures 9.4 and 9.5 in Chap. 9.



Vorticity and Incompressible Flow

This book is a comprehensive introduction to the mathematical theory of vorticity
and incompressible flow ranging from elementary introductory material to current
research topics. Although the contents center on mathematical theory, many parts of
the book showcase the interactions among rigorous mathematical theory, numerical,
asymptotic, and qualitative simplified modeling, and physical phenomena. The first
haif forms an introductory graduate course on vorticity and incompressible flow. The
second half comprises a modern applied mathematics graduate course on the weak
solution theory for incompressible flow.
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Atmosphere/Ocean science.
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An Introduction to Vortex Dynamics for Incompressible
Fluid Flows

In this book we study incompressible high Reynolds numbers and incompressible
inviscid flows. An important aspect of such fluids is that of vortex dynamics, which in
lay terms refers to the interaction of local swirls or eddies in the Auid. Mathematically
we analyze this behavior by studying the rotation or cur! of the velocity field, called
the vorticity. In this chapter we introduce the Euler and the Navier—Stokes equa-
tions for incompressible fluids and present elementary properties of the equations.
We also introduce some elementary examples that both illustrate the kind of phenom-
ena observed in hydrodynamics and function as building blocks for more complicated
solutions studied in later chapters of this book.

This chapter is organized as follows, In Section 1.1 we introduce the equations,
relevant physical quantities, and notation. Section 1.2 presents basic symmetry groups
of the Euler and the Navier-Stokes equations. In Section 1.3 we discuss the motion
of a particle that is carried with the fluid. We show that the particle-trajectory map
leads to a natural formulation of how quantities evolve with the fluid. Section 1.4
shows how locally an incompressible field can be approximately decomposed into
translation, rotation, and deformation components. By means of exact solutions, we
show how these simple motions interact in solutions to the Euler or the Navier-Stokes
equations. Continuing in this fashion, Section 1.5 examines exact solutions with shear,
vorticity, convection, and diffusion. We show that although deformation can increase
vorticity, diffusion can balance this effect. Inviscid fluids have the remarkable property
that vorticity is transported (and sometimes stretched) along streamlines. We discuss
this in detail in Section 1.6, including the fact that vortex lines move with the fluid
and circulation over a closed curve is conserved. This is an example of a quantity
that is locally conserved. In Section 1.7 we present a number of global guantities,
involving spatial integrals of functions of the solution, such as the kinetic energy,
velocity, and vorticity flux, that are conserved for the Euler equation. In the case
of Navier-Stokes equations, diffusion causes some of these quantities to dissipate.
Finally, in Section 1.8, we show that the incompressibility condition leads to a natural
reformulation of the equations (which are due to Leray) in which the pressure term can
be replaced with a nonlocal bilinear function of the velocity field. This is the sense in
which the pressure plays the role of a Lagrange multiplier in the evolution equation.
The appendix of this chapter reviews the Fourier series and the Fourier transform
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(Subsection 1.9.1), elementary properties of the Poisson equation {Subsection 1.9.2),
and elementary properties of the heat equation (Subsection 1.9.3).

1.1. The Euler and the Navier-Stokes Equations

Incompressible flows of homogeneous fluids in all of space RY, N = 2.3, are
solutions of the system of equations

Dv
— = —-Vp 4+ vAv, 1.1
D p+vav (1.1)
divv =0, (x,n) e RY x [0, o), (1.2)
vh=o=v, xeR", (1.3)
where v(x, 1) = (', 12, ..., v™)" is the fluid velocity, p(x, ) is the scalar pressure,

D/ Dt is the convective derivative (i.e., the derivative along particle trajectories),

N
D 3 3
— =YW 14
Dt az+j=l”ax, (1.4

and div is the divergence of a vector field,

. AN
d1vv=z—.-, (1.5)

ad 0 3\
V= —, ... —, .
(8X| ’ ax;y BXN> (I 6)

N .
A=) —. (.7

A given kinematic constant viscosity v > 0 can be viewed as the reciprocal of the
Reynolds number R.. For v > 0, Eq. (1.1) is called the Navier—Stokes equation; for
v = Oitreduces to the Euler equation. These equations follow from the conservation
of momentum for a continuum (see, e.g., Chorin and Marsden, 1993). Equation (1.2)
expresses the incompressibility of the fluid (see Proposition 1.4). The initial value
problem [Eqs. (1.1)-(1.3)] is unusual because it contains the time derivatives of only
three out of the four unknown functions. In Section 1.8 we show that the pressure
p(x, t) plays the role of a Lagrange multiplier and that a nonlocal operator in RY
determines the pressure from the velocity v(x, f).

This book often considers examples of incompressible fluid flows in the periodic
case, i.e.,

v(x +e;, 1) = v(x, 1), i=1,2....N, (1.8)
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for all x and t > 0, where ¢; are the standard basis vectors in RY, ¢; = (1,0, ... ,)’,
etc. Periodic flows provide prototypical examples for fluid flows in bounded domains
€ ¢ RY. In this case the bounded domain 2 is the N-dimensional torus T, Flows
on the torus serve as especially good elementary examples because we have Fourier
series techniques (see Subsection 1.9.1) for computing explicit solutions. We make
use of these methods, e.g., in Proposition 1.18 (the Hodge decomposition of T¥) in
this chapter and repeatedly throughout this book.

In many applications, e.g., predicting hurricane paths or controlling large vortices
shed by jumbo jets, the viscosity v is very small: v ~ 1076 — 10~3. Thus we might
anticipate that the behavior of inviscid solutions (with v = 0) would give a lot of
insight into the behavior of viscous solutions for a small viscosity v <« 1. In this
chapter and Chap. 2 we show this to be true for explicit examples. In Chap. 3 we
prove this result for general solutions to the Navier-Stokes equation in R¥ (see
Proposition (3.2).

1.2. Symmetry Groups for the Eunler and the Navier-Stokes Equations

Here we list some elementary symmetry groups for solutions to the Euler and the
Navier-Stokes equations. By straightforward inspection we get the following
proposition.

Proposition 1.1, Symmetry Groups of the Euler and the Navier-Stokes Equations.
Let v, p be a solution to the Euler or the Navier-Stokes equations. Then the Sfollowing
transformations also yield solutions:

(i} Galilean invariance: For any constant-velocity vector ¢ € R,

Ue(x,t) =v(x —ct, ) +c,

19
Pel(x.t) = p(x —et, 1)
is also a solution pair.
(ii) Ratation symmetry: for any rotation matrix Q (Q' = Q™Y),
vo(x, 1) = Qu(Qx, 1),
(1.10)

po(x, 1) = p(Qx, 1)

is also a solution pair.
(iii) Scale invariance: forany ), 1 € R,

A (x t A o fx ot
==l = -, = =pl -, =, 1
Ure(x. 1) Tv<k r) Prc(x, 1) TZP(A r) (1.11)

is a solution pair to the Euler equation, and for any v € R*,

- x ¢ B x ¢
Ve(x, ) =1 I/Zv(;]—/—:,?), pelx, ) =71 lp(m,;>, 1.12)

is a solution pair to the Navier-Stokes equation.



4 1 Introduction to Vortex Dynamics

We note that scaling transformations determine the two-parameter symmetry group
given in Egs. (1.11) for the Euler equation. The introduction of viscosity v > 0,
however, restricts this symmetry group to the one-parameter group givenin Egs. (1.12)
for the Navier-Stokes equation.

1.3. Particle Trajectories

An important construction used throughout this book is the parricle-trajectory map-
ping X(-.ty:a €RY — X(a,1) € RY. Given a fluid velocity v(x,1), X(a, 1) =
(X1, X7, ..., Xy) is the location at time r of a fluid particle initially placed at the
pointa = (o, as. ..., ay) attime t = 0. The following nonlinear ordinary differ-
ential equation (ODE) defines particle-trajectory mapping:

%(a,t) = v(X (e, 1), 1), X(x.0) =a. (1.13)

The parameter « is called the Lagrangian particle marker. The particle-trajectory
mapping X has a useful interpretation: An initial domain € C RY in a fluid evolves
in time to X(2,1) = {X(a,1): a € ), with the vector v tangent to the particle
trajectory (see Fig. 1.1).

Next we review some elementary properties of X (-, ). We define the Jacobian of
this transformation by

J(a, t) = det(V, X (a, 1)). (1.14)
We use subscripts to denote partial derivatives and variables of differential operators,

e.g., fi=8/01f.Vy = [(3/3c;), ..., (3/0ay)]. The time evolution of the Jacobian
J satisfies the following proposition.

Figure 1.1. The particle-trajectory map
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Proposition 1.2. Let X (-, t) be a particle-trajectory mapping of a smooth velocity
field v € RY. Then

-(—97 = (div, v)j(x(a,‘)‘,)l(a, t). (1.15)

We also frequently need a formula to determine the rate of change of a given
function f(x, ) in a domain X (£2, ) moving with the fluid. This calculus formula,
called the transport formula, is the following proposition.

Proposition 1.3. (The Transport Formula). Let Q@ C R” be an open, bounded domain
with a smooth boundary, and let X be a given particle-trajectory mapping of a smooth
velocity field v. Then for any smooth function f(x,t),

d

— fdx:/ [f +div.(fv)ldx. (1.16)
dr Jyan X(@.0

We give the proofs of Propositions 1.2 and 1.3 below. As an immediate application
of these results, we note thateither J (o, 1) = 1 ordivy = 0 implies incompressibility.

Definition 1.1. A flow X (-, 1) is incompressible if for all subdomains Q with smooth
boundaries and any t > O the flow is volume preserving:

vol X(Q2,1) = vol Q.

Applying the transport formulain Eq. (1.16) for f = 1, we getdiv v = 0. Moreover,
then Eq. (1.15) yields J (e, t) = J (o, 0) = 1. We state this as a proposition below.
Proposition 1.4. For smooth flows the Jollowing three conditions are equivalen::

(i) aflow is incompressible, i.e., ¥2 C RY, 1 > 0 vol X(R2,2) =vol,
(ii) divv =0, )
(iii) J(a,t) = 1.

Now we give the proof of Proposition 1.2.

Proof of Proposition 1.2. Because the determinant is multilinear in columns (rows),
we compute the time derivative

8J 3 . [axd ;88X
—a—t-_adet[ (ozt)] ZAET(OI:)

where A’ is the minor of the element aX‘/Ba, of the matrix V,, X. The minors satisfy
the well-known identity

an j n & L](:[
Za—aj—Aizﬁi./, where 8‘.:{0./(#1"



