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Problem solving in physics is not simply a test of understanding
the subject, but is an integral part of learning it. In this book, the
basic ideas and methods of quantum mechanics are illustrated by
means of a carefully chosen set of problems, complete with
detailed, step-by-step solutions.

After a preliminary chapter on orders of magnitude, a variety
of topics are covered, including the postulates of quantum
mechanics, Schrodinger’s equation, angular momentum, the
hydrogen atom, the harmonic oscillator, spin, time-independent
and time-dependent perturbation theory, the variational method,
identical particles, multielectron atoms, transitions and scatter-
ing. Most of the chapters start with a summary of the relevant
theory, outlining the required background for a given group of
problems. Considerable emphasis is placed on examples from
atomic, solid-state and nuclear physics, particularly in the latter
part of the book as the student’s familiarity with the concepts and
techniques increases.

Throughout, the physical interpretation or application of the
results is highlighted, thereby providing useful insights into a
wide range of systems and phenomena. This approach will make
the book invaluable to anyone taking an undergraduate course in
quantum mechanics.
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Preface for the reader

The problems in this book are intended to cover the topics in an average
second- and third-year undergraduate course in Quantum Mechanics.
After a preliminary chapter on orders of magnitude, there are eight
chapters on topics arranged in a fairly conventional order. The tenth and
final chapter contains a selection of miscellaneous problems on the topics
of the previous chapters. I have separated them from the others on the
grounds of their being somewhat longer and perhaps more difficult. But
you should not be deterred from trying them on that account.

The important thing for all the problems is that you do attempt them. 1f
you attempt a problem, and think about it, but cannot solve it, and then
look up the solution, you will get much more benefit than if you jump to
the solution as soon as you have read the problem. If you can solve a
problem, you are still advised to look at the solution, which might contain
a quicker or neater method than the one you have used. (If yours is
quicker or neater I shall be pleased to hear from you.) I have also
included some comments at the ends of some of the solutions, which you
may find useful. They relate, either to the algebraic technique, or, more
commonly, to a physical interpretation or application of the result.

At the beginnings of Chapters 2 to 9, I have included sections entitled
Summary of theory, and you should read the summary before trying the
problems in the chapter. The summary has a two-fold object. One is to
introduce the notation, and the other is to inform you what you need to
know before you attempt the problems. The results are quoted without
proofs, which it is assumed you will obtain in your lecture course.

The equations are numbered independently in each solution and
summary. A single equation number refers to the equation within the
current solution or summary. An equation in another solution is referred
to by a triple number, e.g. (5.7.3) is equation 3 in the solution to Problem
5.7. Reference from outside to an equation in a summary is made by a
double number, so (4.8) is equation 8 in the summary for Chapter 4.
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1

Numerical values

Values of physical constants

speed of light ¢ =2.998 X 10°ms™!
permittivity of vacuum g = 1/pyc? = 8.854 X 1072 Fm™!
Planck constant h =6.626 X 107 Js

h = hp2m =1.055 X 107*7Js
elementary charge e =1.602 x 1079 C
Boltzmann constant kg =1.381 x 1072 JK"!
Avogadro constant Ny, = 6.022 x 10 mol™!
mass of electron m, =9.109 x 10~ kg
mass of proton m, =1.673 x 1077 kg
mass of neutron m, = 1.675 x 1077 kg
atomic mass unit m, =1073/N, = 1.661 x 10% kg
Bohr radius ay = 4wgh’/e’m, =5292 x 10" m
Rydberg constant R. = h/Amcm.al = 1.097 x 10" m-!
fine structure constant o = e*/dwegch = 7.297 x 103
Bohr magneton U = ehf2m, =9274 x 107# 1!
nuclear magneton Hn = ehf2m, =5.051 x 1077 JT!

The values of the physical constants given above are sufficiently precise
for the calculations in the present book. In fact, these constants are
known with a fractional error of 107 or less, apart from the Boltzmann
constant where the fractional error is about 1075. A list of the values of
the fundamental physical constants which are the best fit to the results of
a variety of precision measurements has been prepared by Cohen and
Taylor (1986).
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Problems

The values of physical constants are given on p. 1. The answers to
Problems 1.1 to 1.7 should be given to 3 significant digits.

1.1 The ionisation energy of the hydrogen atom in its ground state is
E;;n =13.60 eV. Calculate the frequency, wavelength, and wave number
of the electromagnetic radiation that will just ionise the atom.

1.2 Atomic clocks are so stable the second is now defined as the
duration of 9192631770 periods of oscillation .of the radiation corre-
sponding to the transition between two closely spaced energy levels in the
caesium-133 atom. Calculate the energy difference between the two levels
ineV.

1.3 A He-Ne laser emits radiation with wavelength A = 633 nm. How
many photons are emitted per second by a laser with a power of 1 mW?

1.4 In the presence of a nucleus, the energy of a y-ray photon can be
converted into an electron—positron pair. Calculate the minimum energy
of the photon in MeV for this process to occur. What is the frequency
corresponding to this energy?

[The mass of the positron is equal to that of the electron.]

1.5 If a dc potential V is applied across two layers of superconducting
material separated by a thin insulating barrier, an oscillating current of
paired electrons passes between them by a tunnelling process. The
frequency v of the oscillation is given by hv =2 eV. Calculate the value
of v when a potential of 1V is applied across the two superconductors.

1.6 (a) The magnetic dipole moment u of a current loop is defined by
p=1IA,

where [ is the current, and A is the area of the loop, the direction of A

being perpendicular to the plane of the loop. A current loop may be

represented by a charge e rotating at constant speed in a small circular

orbit. Use classical reasoning to show that the magnetic dipole moment of-
the loop is related to L, the orbital angular momentum of the particle, by

F‘=°2—’;L,

where m is the mass of the particle.
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(b) If the magnitude of L is A (= h/2m), calculate the magnitude of u
for (i) an electron, and (ii) a proton.

1.7 Calculate the value of the magnetic field._réquir.ed to maintain a
stream of protons of energy 1 MeV in a circular orbit of radius 100 mm.

1.8 Neutron diffraction may be used to determine crystal structures.

(a) Estimate a suitable value for the velocity of the neutrons.

(b) Calculate the kinetic energy of the neutron in eV for this velocity.

(c) It is common practice in this type of experiment to select a beam of
monoenergetic neutrons from a gas of neutrons at temperature T.
Estimate a suitable value for T.

1.9 The most accurate values of the sizes of atomic nuclei come from
measurements of electron scattering. Estimate roughly the energies of
electrons that provide useful information.
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Solutions

1.1 The ionisation energy of hydrogen in the ground state is
En=13.60eV =2.18 x 107187,

The frequency of the radiation that will just ionise the atom is

v= ET = 3.29 x 10" Hz.

The wavelength A and wavenumber ¥ of the radiation are

A % =9.12 x 10~%m,

v=2-=110x 10"m™.

-

1.2 The energy difference between the two levels is
hv -5
AE = - = 3.80 x 107 eV.
1.3 The energy of each photon is

he

E=5

where
A=6.33x 10" m.

The power of the laser is
P=1mW,

The number of photons emitted per second is

@

(€))

€)

“

)

(1)

@

3)

4)

1.4 (a) The minimum energy E;, of the y-ray photon required for the
production of an electron and a positron is equal to the sum of the rest
mass energies of the two particles. The mass of the positron is equal to

m,, the mass of the electron. So the required value is
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2m.c?

min 1 06

= 1.02MeV. 1)

e
(b) The frequency v corresponding to this energy is

2
_ 2m.c

v= 2T =247 x 10°Hz. @)

1.5 The frequency of oscillation v of the current is given by

hv=2eV. 6]
For V = 1 volt, the frequency is

v =4.84 x 10 Hz. )

By measuring the frequency we can deduce the value of the applied
voltage from (1). The phenomenon provides a high-precision method
of measuring a potential difference — see Solution 8.10, Comment (2) on
p. 178.

1.6 (a) Denote the radius of the orbit by a, and the speed of the
particle by v. Then the period of revolution is T = 2ra/v. The current due
to the rotating charge is

=£ €
I—t 2ma’ M

The magnetic dipole moment is

p=1IA= %mxz = leva. ¥3)

The orbital angular momentum is

L = mav. 3)
Therefore
e

The vector form follows because, for positive e, the guantities g and L
are in the same direction.

(b) For L = &, the magnetic dipole moment of a circulating electron is

eh

He= 5= 928 X 10T, (5)

(3
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while, for a circulating proton, it is
= 505 x 1077 3T, )
2m,

Comments

Although the result in (4) has been derived by classical reasoning for the
special case of a charge moving in a circular orbit, it is valid for orbital
motion in general in quantum mechanics. A particle, such as an electron
or a proton, in a stationary state does not move in a definite orbit, nor
does it have a definite speed, but it does have a definite orbital angular
momentum, the component of which in any direction is of the form n#,
where 7 is an integer, positive, negative, or zero. Thus # may be regarded
as a natural unit of angular momentum. Since magnetic dipole moment
and angular momentum are related by (4), the component of magnetic
dipole moment of an electron, due to its orbital motion, has the form
nug, where

_ eh - 0

2m,

Thus ug, known as the Bohr magneton, is the natural unit of magnetic
dipole moment for the electron. Similarly the quantity

eh
2m

Un = ®)
known as a nuclear magneton, is the natural unit of magnetic dipole
moment for the proton.

The simple relation in (4) between magnetic dipole moment and
angular momentum does not apply when the effects of the intrinsic or
spin angular momentum of the particle are taken into account. However,
it remains true that the magnetic dipole moments of atoms are of the
order of Bohr magnetons, while the magnetic dipole moments of the
proton, the neutron, and of nuclei in general, are of the order of nuclear
magnetons.

1.7 If the velocity of the proton is v, the Lorentz force acting on it, due
to the magnetic field B, is e[v x B]. The force is perpendicular to the
instantaneous direction of motion and to the direction of B. Thus the
protons move in a circle, the plane of which is perpendicular to B.
Equating the force to the mass times the centripetal acceleration for
circular motion, we have
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2
Bev = m;v , Q)

where a is the radius of the circle. Whence

my _ (2m,E)"
ea ea )

B= @)

Inserting the values of the constants, together with E = 10°eV = (10%) J,
and a = 0.1 m, gives

B=145T. A3).

1.8 (a) To obtain information on the crystal structure, neutrons are
diffracted by the crystal in accordance with Bragg’s law

nA = 2dsin 6. 1)

(This is the same law that governs the diffraction of X-rays.) In this
equation, A is the wavelength of the neutrons, d is the distance between
the planes of diffracting atoms, 6 is the glancing angle between the
direction of the incident neutrons and the planes of atoms, and » is an
integer (usually small). The equation cannot be satisfied unless A < 2d.
On the other hand, if A << 24, 6 is inconveniently small. So it is necessary
for A to be of the same order as d, which is of the order of the interatomic
spacing in the crystal. Put A = 4 =0.2 nm (a typical value).
The de Broglie relation between A and the velocity v of the neutron is

h
a: 2
nv’ ( )

where m,, the mass of the neutron, is 1.675 X 10~ kg. Thus

h
myA

(b) The kinetic energy of the neutrons is
E=imp?=33x10"2J =20meV 4

=2.0kms™!. 3)

D=

for the above velocity.

(c) Put E = kgT. Then the above value of E corresponds to T = 240K,
which is of the order of room temperature. Such neutrons are readily
available in a thermal nuclear reactor; they are termed thermal neutrons.

1.9 The electrons scattered by nuclei show diffraction effects character-
istic of the radius r of the nucleus, the value of which lies in the range
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1-6fm (1fm = 107"* m). As in Problem 1.8, measurable effects require
that the wavelength A of the electron should be of the order of r. Thus
the momentum p of the electron should satisfy

p=tl _13x10kgms, 1)
A r
for r = 5 fm. This value is very much larger than
mec =27 % 1002 kgms!, ¥}

where m, is the rest mass of the electron, which shows that the electrons
required for the measurements are highly relativistic.
The energy E of the electrons is related to their momentum p by

EY = mic* + pic2. 3)
Since p >> m.c, we can neglect the first term on the right-hand side of
(3). Thus

E =~ pc=4.0x 1071 J = 250 MeV. O]

The value obtained for E clearly depends on the value taken for r. If E is
in MeV, and A (=7r) is in fm, you may verify that, for the highly
relativistic case,

Ei~10° x <1 = 1240, | ©)
e
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Fundamentals

Summary of theory

1 What you need to know

Definitions and properties

Operator, linear operator, functions of operators, commuting and non-
commuting operators, eigenfunction, eigenvalue, degeneracy, normalised
function, orthogonal functions, Hermitian operator.

2 Postulates of quantum mechanics

(1) The state of a system with n position variables ¢q;, g,, ... g, is
specified by a state (or wave) function ¥(q,, g5, . .. g,). All possible
information about the system can be derived from this state function. In
general, n is three times the number of particles in the system. So for a
single particle n = 3, and ¢q,, g,, g; may be the Cartesian coordinates x,
¥, z, or the spherical polar coordinates r, 8, ¢, or some other set of
coordinates.

(2) To every observable there corresponds a Hermitian operator given
by the following rules:
(i) The operator corresponding to the Cartesian position coordinate x is
x X — similarly for the coordinates y and z.
(ii) The operator corresponding to p,, the x component of linear
momentum, is (#/i)d/3x — similarly for the y and z components.
(iii) To obtain the operator corresponding to any other observable, first
write down the classical expression for the observable in terms of x,
Y, Z, Px» Py, P, and then replace each of these quantities by its
corresponding operator according to rules (i) and (ii).
(3) The only possible result which can be obtained when a measure-
ment is made of an observable whose operator is A is an eigenvalue of A.
(4) Let a be an observable whose operator A has a set of eigenfunc-
tions ¢, with corresponding eigenvalues a;. If a large number of
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measurements of a are made on a system in the state v, then the
expectation value of « for the state vy (i.e. the arithmetic mean of the
eigenvalues obtained) is given by

(4) = [v*aydr, )

where dr is an element of volume, and the integral is taken over all space.

(5) If the result of a measurement of « is a,, corresponding to the
eigenfunction ¢,, then the state function immediately after the measure-
ment is ¢,.

This means that in general a measurement changes or disturbs the state
of a system. The set of measurements referred to in the 4th postulate are
all made on the system in the same state 1. It is in general necessary to
manipulate the system after each measurement to return it to the state vy
before the next measurement is made.

(6) The time variation of the state function of a system is given by

= =SHy, 2)

where H is the operator formed from the classical Hamiltonian of the
system.

Note on Postulate 2 (iii)

If the classical eXpression for an observable contains a product a8 whose
operators A and B do not commute, then the operator corresponding to
afis (AB + BA). Examples of this are rare.

3 Basic deductions from the postulates

(a) Probability of result of measurement

Discrete eigenvalues. Suppose the eigenvalues g; of A in postulates 4 and
5 are discrete, and that the state function y and all the eigenfunctions ¢;
of A are normalised. To find the probability p, that the result of a
measurement of the observable « is a particular a,, expand ¥ in terms of
the ¢;, i.e. put

Y= chd’j- 3
F .
Then
pr = lef* ©)

The coefficient ¢, is obtained from



