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Analytical Theory of Subsonic and Supersonic Flows.

By
M. SCHIFFER.
‘With 24 Figures.

Introduction.

This article deals with the mathematical theory of motion of a compressible
fluid. On account of the non-linear character of the differential equations in-
volved, an analytical treatment of the flow under most general circumstances has
not yet been possible. Therefore, in order to facilitate treatment we have through-
out made various idealizing assumptions. In particular we neglect viscosity,
thermal conductivity and any external forces acting on the fluid and, moreover,
we restrict ourselves to stationary irrotational flows. Even with these simpli-
fications the deeper mathematical problems regarding the existence and uniqueness
theory have been satisfactorily treated only under the additional requirement
of plane flow. And even in this special theory we fan into some unsolved problems
of the theory of partial differential equations of mixed elliptic-hyperbolic type
which are connected with the transition from subsonic to supersonic flow regiine.
‘We have not touched upon the theory of shock discontinuities in the flow as
this theory is developed systematically in the article by CABANNES.

The structure of the article is as follows: In the first chapter, we give the
basic physical and mathematical concepts of the theory and the fundamenta:
equations of motion. Some explicit solutions illustrate the general theory.

The second chapter deals with the theory of linearized flows. This is a theory
of approximations applicable to thin or slender bodies in an otherwise uniform
flow. In this case, the fundamental non-linear equations can be replaced by linear
differential equations with constant coefficients. Since only a small number of
explicit solutions for the correct fundamental equations is known, it is important
to possess approximation methods which permit qualitative statements on the
nature of the flow considered. The theory of linearization is applicable to flows
in the plane and in three-dimensional space and is extensively used in airfoil
theory and other branches of applied aerodynamics.

The third chapter is devoted to the hodograph method. This more refined
method achieves a rigorous linearization of the differential equations of motion
of a compressible fluid. It works, however, only in the case of plane flow and is,
moreover, an indirect procedure. Indeed, it yields exact solutions of the correct
equations, but not necessarily those solutions which correspond to the desired
boundary conditions. The adjustment to the correct side conditions implies
approximation procedures which are quite involved. Howeéver, at present the
hodograph method seems the most promising analytical tool in the theory o
plane flows. :

The fourth chapter deals with the uniqueness and existence theory of plane
subsonic flows. We describe the standard analytical methods of this theory and
sketch some fundamental proofs in detail sufficient to allow an understanding

Handbuch der Physik, Bd. IX. 1



2 M. ScuirFER: Analytical Theory of Subsonic and Supersonic Flows. Sect. 1.

of the uunderlying principles and methods. Existence proofs may appear as
rather esoteric to the applied aerodynamist, but a good existence proof contains
the germs of a constructive procedure, and the role of the Janzen-Rayleigh itera-
tion is considered in this context. Finally, we describe a method of obtaining
inequalities and estimates for the velocity and pressure fields of a flow; it stands
in analogy to the distortion theorems in conformal mapping which allow similar
estimates in the case of an incompressible flow. When exact solutions are not
easily available such estimates may be quite valuable.

The fifth chapter covers the theory of two-dimensional transonic flows. The
methods and problems in this theory are described and, in particular, the Taylor
problem of the existence of continuous transonic flows is discussed. While the
existence of such flows for arbitrary boundaries seems dubious, explicit solutions
can be given for special problems. We consider the method of idealized fluids
which permits the construction of some transonic flow patterns of practical
importance, such as flow through a nozzle.

We have tried to make the different chapters to a large extent independent
of each other. In view of the extensive literature in the field, we have aimed
less at completeness of results and methods than at a clear description of the
basic ideas; for more detail we refer to the general references and textbooks
listed: at the end of the paper as well as to the bibliography, organized by chapters.

1. Physical and mathematical foundations.

1, Basic assumptions and fundamental equations. The motion of a fluid is
described mathematically by the vector field of velocity q and the three scalar
fields of pressure p, density g and temperature 7. These six quantities are
considered as functions of the three space variables %, ¥, z and the time ¢.

We shall consider in this article only non-viscous fluids and neglect the in-
fluence of external forces like gravity. Then the equations of motion are

05 =—Vp. (1.1)

The symbol D/D¢ is the Eulerian or hydrodynamical derivative: it denotes dif- .
ferentiation of a field quantity relative to an observer moving with the flow.
It takes into account, therefore, the spatial as well as the temporal change and
is defined by the well-known operator formula:

D 9
Br =% T V) (t:2)
We can thus give to (1.1) the alternative form
0 ’
‘57(1-%(9"17)‘1:—%1775' (1.17)

The conservation of matter in the flow leads to another fundamental dif-
ferential relation between the velocity and the density field, namely, the equation
of continuity

2
37¢+V (eq)=0. (1.3)
The physical nature of the fluid considered enters the theory through the

equation of state which connects $, ¢ and T'. There are various other thermo-
dynamical quantities like the internal energy per unit of mass U or the entropy
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per unit mass S. Any two of these variables can be used in order to express all
the others in terms of them. In theoretical fluid dynamics it is particularly useful
to take the entropy S as one basic variable. This is evident from the definition
of the entropy change 4S with a heat increase 4Q

_ 40 ,
AS =59 (1.4)

and from the first fundamental law of thermodynamics
1
A0 —AU+;bA(?). (1.5)

It is often permissible to neglect heat conduction in the fluid and we shall do
so consistently. We can then state that for a fixed unit of mass

409 =0 (1.6)
throughout the entire flow motion. This guarantees by Eq. (1.4) that the specific
enitropy of the moving matter remains constant:

DS 0

while we see from Eq. (1.5) that T will in general vary during the motion.

A flow which has a constant specific entropy for each moving particle is
called an isentropic flow. The theory of most continuous flow phenomena can
be carried out under the assumption of isentropy : only in the case of discontinuity
surfaces and shock phenomena does the change of entropy play an important
role and need to be taken into account.

The six Eqgs. (1.17), (1.3), (1.7) and the equation of state
p=1F S) (1.8)

are a system for the six unknown quantities q, g, $, S describing the motion of
the fluid. They have to be complemented by proper initial and boundary con-
ditions in order to make the problem of integration a well determined one.

In order to bring the basic equations of motion (1.1’) into a simpler form we
make use of the identity of vector analysis

qVg=:zV@)~ax ¥Vxaq. (1.9)

This identity is useful since it introduces the vector
I=Vxgq (1.10)
which represents the vorticity of the flow and is significant for the flow pattern.

The meaning of the term iy 2 is best understood from the thermodynamical

@
relations (1.4) and (1.5). Since S, U, p and g are well determined functions of
the physical state variables in the fluid, we obtain after elimination of 4Q the
generally valid identity:

VU=TVS—1>V(—;—). (1.11)
We introduce now the specific enthalpy [I]
H=U+—;—:b. (1.12)

1%
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and bring Eq. (1.11) into the form
VH=TVS+%V{>. (1.11")

Combining Egs. (1.1°), (1.9) and (1.11’), we then obtain finally

Lq+V[H+1g)—ax§=TPs. (1.12)

This formulation of the equations of motion is due to CROCCO; it is advantageous
since it exhibits clearly the various quantities which have an immediate physical
significance [2].

As an illustration of the usefulness of CrRocco’s formula we shall derive from
it the relation between entropy and vorticity in the flow. Let C(f) be a closed -
curve moving with the flow, and let it be represented in the parametric form
r=7r(s, ). The quantity

Z(t)=(j§qdr :fq-a%r(s,t)ds (1.13)

c)

is called the circulation around the curve C(¢). From Eqgs. (1.2), (1.9) and (1.12')
we compute

D D a 2
2z =f—D—t—q--a—;r(s,t) ds +fq 2 qas =<j>:rvs-.2r, (1.14)
s 5 ’ Clo)

. D (2o o . . .
since 'D_t('é? r) =35 q0on the curve C(f) which moves with the flow and since
¢* and H are single-valued functions in space. The change of circulation is thus
closely related to the specific entropy along the curve considered. On the other
hand, we have by STOKES' theorem

Z=¢q-dr=[[5 ndo, (1.15)
c z

where X is an arbitrary surface spanned through the curve C and » is the local
normal on X. This identity and Eq. (1.14) show the close relation between circula-
tion, entropy and vorticity.

A flow in which the fluid has the same constant entropy S is called homentropic.
Since in this case V'S =0, we have in every homentropic flow thé Helmholtz-
Kelvin circulation theorem

D
for every closed curve C.

If a flow is made up of particles which come all from a region with constant
entropy it must be homentropic by virtue of the isentropy condition (1.7). If
all particles pass through a region where, moreover, the vorticity vector vanishes
identically we can conclude from Egs. (1.16) and (1.15) that the flow has every-
where vorticity zero, that is:

Vxq=0. (1.17)
Such a flow is called irrotational.

We shall deal from now on with steady (that is, time independent), irrotational
and homentropic flows. Our preceding considerations show that such flows will
arise under very general assumptions and are of great importance; on the other
hand, the assumptions made will lead to a simple mathematical theory which
can be handled without too great complications.
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Because of the simplifying assumptions, we are now dealing with the five
functions ¢, p and ¢ which depend only on the three space variables x, y, s.
Between p and p there exists the (adiabatic) equation of state

?=/(0). (1.18)
CRroccO’s equation (1.12) reduces to

H + % ¢* = const (1.19)

and the continuity equation has now the form
' Vie-q) =o. (1.20)

In the homentropic case, Eq. (1.11") simplifies to

. d .
H=H) =f71’_ (1.417)

and (1.19) becomes the classical Bernoulli equation
1 dp ' ,
54+ f—e— = const, (1.19")

which establishes the speed-density relation.

From the condition of irrotationality (1.17) follows the existence of a function
@(x, ¥, ) such that
q=Vep. (1.21)

@ is called the velocity potential of the flow. If we insert Eq. (1.21) into the con-
tinuity equation (1.20), we obtain the second order partial differential equation
for the velocity potential

VieVe) =0. (1.22)

The mathematical theory of a steady, homentropic and irrotational flow reduces,
therefore, to the following procedure: (a) From the adiabatic equation of state
(1.18) we compute the enthalpy function (1.11”"). (b} By means of BERNOULLI'S
equation, we express the density as a function of the local speed

e = P((V9)?) = P(¢?). (1.23)
{c) We insert Eq. (1.23) into Eq. (1.22) and obtain the partial differential equation
V(P(Ve)P) - Vo) =0 (1.24)

which is to be integrated in accordance with specified boundary conditions.
The entire analytic theory of steady homentropic and irrotational flow is
the theory of the non-linear partial differential equation (1.24) and its boundary
value problems.
Because of the great importance of Eq. (1.24) for the whole theory we write
it out in detail:

eV g+ 5% V((F9)?) - Vo =o. (1.25)
From Eq. (1.19') we deduce
{4 1 d
_55;=_7_09?_ cz={’_, (4.26)

The quantity ¢ =V$'(g) is called the local speed of sound since it is the speed
at which small perturbations travel, as is apparent from the linearized theory
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discussed in Chap. II. By means of Eq. (1.26), we obtain for Eq. (1.25) the form:

. (1.27)

Px ¥ Py P
—z(pxy o2 _2(?“ o 4

o —2¢,, 2 =0.

The Eq. (1.27) is non-linear; it is, however, quasi-linear since the highest
order derivatives (2nd order) occur linearly. It reduces to LAPLACE’S equation
in the limit case ¢ = o0 which can, therefore, be considered as the case of an in-
compressible fluid. The deviation from LAPLAGE'S equation will obviously be

small if the ratio 2L a3 :
i Pz + Pyt @
MP= S5 =" (1.28)

is small.

The quantity M =g/c is called the local Mach number of the flow at the point
%, y, z considered. It is a well determined function of the local speed g since ¢
depends on ¢ only. Its importance for the general theory is already obvious in
the form (1.27) of the fundamental partial differential equation and will become
more so in the further developments.

2. The case of the ideal gas. The most important equation of state considered
in gas dynamics is that of an ideal adiabatic gas. With a proper choice of units
we have PoOIssoN’s pressure density relation:

p=0, (2.1)
where v is the ratio of the specific heats of the gas for constant pressure and for
constant volume: .

y=-r. (2.1)

U
In the case of air the value y = 1.4 is theoretically and experimentally satisfactory.
The enthalpy of a fluid with the pressure density relation (2.1) is by Eq. (1.11")

H(g) =5Lre™ (2.2)
and the Bernoulli equation takes the form
g+ ;_3'1 0771 = const. 2.3)

The significance of the right hand constant is obvious; it represents the maximum
velocity of the fluid corresponding to the value ¢ =0 and is attained when the
fluid flows into vacuum. This constant is called the escape velocity and is denoted
DY Gmag- We can derive from Egs. (2.3) and (2.1) the formulas

—1 -
_’Jl_{y_ (hax— ") =" * (2.4)
and

92 = qg:nax - 7T P‘_A" . (2'4’)

We normalize the units in such a way that to the state of rest, i.e. to g =0,
correspond the values g =1, p=1. We then derive from Eq. (2.4")

1/ 2
ql'ua.x'_‘l/y_1 (25)
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and can rewrite Eq. (2.4") in the form

r=1,
9® = Ghax (1 —p ) (247)
This is the formula of de StT. VENANT and WaNTZEL [3].
We obtain from Eq. (2.1) the formulas for the local speed of sound
' b ¥-1
02=1)'(e) =y97_1=‘})-—e— =7P Yo, (2.6)
In view of Egs. (2.5) and (2.4") we have the alternative forms

1

=2 (e — ) =y~ L5 g 27

¢ is thus expressed explicitly in terms of the local speed g. We observe that
g 7= Quax implies ¢ =0 and that the maximum value of ¢

co = (2.8)
is attained for the state of rest.

The speed ¢ which coincides with its corresponding velocity of sound is called
the critical speed ¢.,;;. From (2.7) we compute

2 2 .
9erit =V’)’:1 =l/7+1 Co. . (29)

To gy corresponds the Mach number M =1; for ¢<Cq.; we have M(gq) <1 and
for g > g holds M(g)> 1. A flow is called subsonic at a place where its local

Mach number is less than 1 and supersonic where it is larger than 1. We have
therefore the criterion

2y ic: [ 2 ~
1<\ subsonic; g >l/ 51+ Supersonic flow.  (2.10)

It is of interest to point out a mathematical accident which is of considerable
Importance in gas dynamics. We can apply the binomial theorem and derive

from Eq. (2.4") the series development for the pressure in terms of the speed
variable ¢:

¥
y—

p={1__7“‘_1q2] 1=1_%q2+8¢yq4+...‘ (2.11)

2y

In the case of an incompressible fluid of constant density 1 and the pressure 1
at rest, we have the Bernoulli formula

p=1—7¢. (2.12)

It happens that the two series developments coincide in their first two terms.
If we treat an'ideal gas as incompressible, we commit an error in all pressure
effects which is only of the orde cz2¢* and relatively small for smaller Mach
numbers, This is the reason why the theory of incompressible fluid flows is
quite satisfactory for gas dynamics even up to the Mach number 0.5.

From Egs. (2.7) and (2.5), we get the formula for the Mach number

P (2:13)
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and from Eq. (2.4) we derive

— -1
ot =1+ 12 U (2.13)

Let us consider a steady flow of a compressible medium. All stream lines
through a fixed small circle form a narrow tube, called a stream tube. In the
flow regime, no fluid passes through the walls of a stream tube. Consider next
the stream line through the center of the original circle and denote by Ps) a
variable point on it; the parameter s may be chosen as the arc length along
this curve. Finally, let z(s) be the plane through P(s) which is orthogonal to
the stream line.

The stream tube will cut off from s (s) a cross section of area A(s). We assume
the tube so narrow that the variation of density and speed over each cross section
may be neglected and we denote the corresponding values of density and speed
by o(s) and g(s}). We may then formulate the law of conservation of matter as

A(s) g (s) g(s) = const. (2.14)
By logarithmic differentiation of Eq. (2.14) we obtain

dA do dq
il A R 2.1
4 e q 2.15)

On the other hand, we may express do and dq in terms of dp by use of Egs. (2.1)
and (2.3); we have

a4 do+ Lap— .
T TV 9%ty =0 (2.16)
and, hence, using Eq. (2.6), we may bring Eq. (2.15) into the form
a4 _ e (e _ (&
4 " gt (1 VP)_ eq (1 62)' 247)

It is easily seen that in the case of an incompressible fluid we have instead of
Eq. (2.17)
a4 __ dp ,

The significance of the Mach number M =g/c in the comparison between compres-
sible and incompressible fluid flow is obvious.

From Egs. (2.16) and (2.17) we find

A dgq ¢

o= =
The cross section of a stream tube decreases with increasing speed until the sonic
velocity is attained. At this moment, A attains its minimum and increases there-
after with increasing supersonic speed. This shows the basic difference in flow
geometry and dynamics between the subsonic and supersonic flow regimes. The
preceding considerations play an important role in turbine theory and in the
theory of Laval nozzles. One purpose of such a nozzle is to create of gas flow of
high supersonic speed. In order to surpass the sonic velocity in a flow through
a Laval nozzle, the latter must narrow down until sonic velocity is attained and
widen again after this point in order to make possible a further increase in the
speed of flow,

3. Some explicit solutions of the fundamental equations. In finding particular
solutions for the differential equations (1.27) of the velocity potential, it is often
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useful to bear in mind its genesis from the continuity equation. Let us ask, for
example, for a solution @(r) which depends only on the distance r from a
fixed point O, say the origin. Since g = V¢, the corresponding flow will be radial;
that is, its stream lines will be radii from O and its speed g(r) will depend on »
only.

The conservation of matter will be expressed by the formula

477r?pg = const 3.1)

which guarantees that the same amount of matter enters per unit of time through
the inner wall of every concentric spherical shell as leaves through the outer
wall. This result could also have been obtained by integration of the equation
of continuity.
From Eqgs. (3.1), (2.13) and (2.13’) we compute easily
rrl
s __ . 1 Y =120 T~ 1)
r=C- gt + 5 ) (3.2)

We observe now that the right hand term in Eq. (3.2) cannot decrease indefinitely.
It has a minimum for M =1, namely

r+1

Y min : C. (7’;— 1 )é-(‘y_—ﬂ ) (3.2")

Thus, a radially symmetric solution of Eq. (1.27) is only possible outside of some
critical sphere. While in the theory of an incompressible fluid we have point
sources and sinks giving rise to radial flows, in the theory of compressible fluids
we find radial sources and sinks possessing a spherical nucleus inside of which
the mathematical solution breaks down and where the physical idealization become
inapplicable. Here for the first time we encounter the phenomenon of a limit
surface beyond which the mathematical theory of the physical assumptions cannot
be continued; we shall meet this situation later in a more general context; see
Sect. 33.

We observe that the acceleration of a radial flow is given by

As long as g<C¢,,, we have clearly dgq/dM > 0. On the other hand, it-follows
from Eq. (3.2) that d7/dM =0 for M =1. Hence, if we approach the critical
radius 7,,;, the acceleration in the flow approaches infinity.

Flows of radial nature occur in conical pipes and are well-described by formula
(3.2} over the range of validity of this sotution.

In precisely the same way we could solve the problem of a plane radial flow.
Using the law of conservation of matter, we would find

_r
I T ek I 7 e
"min 37 y+1+y+1M . 3.4)
We would encounter a limit circle for the flow of radius 7., and corresponding
to the Mach number A ==
Another explicit solutlon of the problem of a steady irrotational and homen-
tropic flow is obtained when we consider a plane flow whose stream lines are
concentric circles around a point O, say the origin, and where the speed ¢(r)

Yy ==
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depends only on the distance 7 from 0. We call such a flow a twodimensional
vortex flow around O. '

By the geometric nature of the flow the conservation of matter is automatically
fulfilled and we have now only to guarantee the irrotationality of the motion.
‘We observe that by Eq. (1.13) the circulation over a circle of radius 7 is given by

Z=2mrq(r). (3.5)

If the vorticity § is identically zero in every concentric ring around 0, the applica-
tion of Eq. (1.15) to the ring domain shows immediately that Z is a constant.
Thus Eq. (3.5) represents ¢(r) as a function of 7; by use of Eq. (2.13) we have

72=C 2+(Y—1)M’.

g (3.6)
We see again that the radius » cannot decrease indefinitely but has the minimum
Toin = (y —1)C (3.7)

which corresponds to the Mach number infinity, that is, to the escape velocity ¢, .
1f we write
72 =2, 1_*_..__2...._!_] (36’)
min y—1 M3 j '

we see clearly that the two-dimensional vortex fiow is subsonic for

Km,,}/;ﬁ; . , (3.8)

Since by Eq. (2.4) ¢ =¢,,,, implies the value ¢ =0, we see that the two-dimen-
sional vortex flow has a vacuum core of radius 7,;,.

The two plane flows considered so far are both radially symmetric; that is,
in both the velocity vector q () depends only upon the distance from the origin.
It is equally easy to determine the most general radially symmetric flow [4] to
[6] by applying at the same time the conditions of irrotationality and of con-
servation of matter. For this purpose decompose the velocity q into the radial

component a(r) and the angular component b(r). The law of conservation of
matter requires

and supersonic for

2rrpa(r) =C (3.9)
while the condition of irrotationality or constant circulation affects only b(7):
2rrb(y) =2, ' (3.10)
Since ¢% =a? -+ b2, we derive from Egs. (2.13), (2.13’), (3.9) and (3.10): A
y+1

ct 1 y—1 =1y y Al 1 3y —1
2 —_— 2 e <o 2
o 318 [1 + 2200 [1 + 72 M]. (3.11)

It is again apparent that » has a minimum value r,;,, which can be derived

from Eq. (3.11) by differentiation. We obtain a more intuitive characterization
by using the identity :

4,,2,242:%:._{_22 (3.12)
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and differentiating it with respect to ¢%; using Eq. (1.26) we find

dar? c? ‘
4n2q2§q_2 - 4n¥r? = -}—EEZZ-. (3.127

For the minimum value of #, the first term in Eq. (3.12") must vanish and we find
472y g* = CE., (312"

Comparing Egs. (3.9) with (3.12") we see that the minimum radius is attained
when the radial speed equals the speed of sound, that is, for sonic radial speed.

There are two values of M?2 possible far a given value of 72; the one M-value
corresponds to subsonic radial speed and the other to supersonic values of a(7).
Two different flow patterns, therefore, are possible aceording to the branch M {r)
chosen in the domain r> 7.

In order ‘o calculate the streamlines of the flow obtained, we start with the
differential equation

a0 __ b _ Z e (3.13)

Since p is a simple function of M and the relation between # and M is given by
Eq. (3.11) we can always find the function @ (#) describing the streamlines in polar
coordinates. The calculation becomes quite elementary when we choose v =1.4.
that is, Z exactly, and introduce the variable

L= - F MY (3.144)
We find from Egs. (2.13°) and (3.11)

a21—10+ 2 .
e =15, 72:“7’“:72'[}— (3.15)

and from Eq. (3.13) we can eompute # (/) in terms of elementary functions. We
find

B llogViEl tp ] 8 :
19——1[10gl/1_l 4 313 515} arctanaﬁ—f—const. (3.15")

All streamlines are obtained from a representative one by turning by a fixed
angle since the general equation is & =%,(r) + const.
The flow described by Eqgs. (3.15), (3.45°) has streamlines in forms of spirals

starting from the limit circle » =7_; . For a detailed description, see RINGLEB [7].
See also [&], [9]. :

4. Plane and axially symmetric flows. A useful simplification of the partiai
differential equation for the velocity potential ¢ is possible in the case of a two-

dimensional flow, Here ¢ depends only on the two variables, %, v, and the Eq. (1.22)
takes the form

a 2 :
-7 (egl) + By (eq,) =0. (4.1)
This can be interpreted as the integrability condition for a new functien v (x, ¥)

such that
oy og oy 2p

—p ot Y Y )
P e, o7, ; Q5 =Qu. ’ (4.2)

The hydrodynamical derivative of ¥ is

D . ;
wDl}l':_ =y, % + Yy v = Q(— PPyt Pu %) =0; (4‘;\
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that is, ¢ (%, ¥) is constant along each streamline of the flow. (%, y) is called
the stream function of the flow.

If € is an arbitrary curve in the (x, y)-plane connecting the points xg, v,

and x,, v, the integral .

Q= [ elwdy —vax) (4.4)
%o, Yo
extended over C represents the amount of matter carried per unit of time across
this curve. By virtue of Eq. (4.2) we can write

Q = (%1, y1) — ¥ (%0, ¥o)- (4.4)

Thus, the difference of the stream function values at two points represents the
flux. of matter through any curve connecting them. This is another intuitive
interpretation of the stream function which reveals its close connection with
the continuity equation.

1f we eliminate y from the system of first order differential equations (4.2)
we obtain again Eq. (4.1), and by virtue of Eq. (1.26) follows

(1 ‘“2})‘?:1‘{—(1 —'——) Pyy— 2 ‘P"»——(p” (4.5)

which is a particular case of Eq. (1.27). In order to eliminate ¢ from the system
(4.2) we observe the identity
(s +93) = 0" ¢* (4.6)

We differentiate this with respect to x and y and use the differential relation
(1.26). We obtain

Va¥is TP ¥y = 00— ) ¥, T, =00 —¢). (47)
On the other hand, we obtain from Eq. (4.2) directly

9(%; + V}yy) - (wax + Qy'n”y) =0. (4-8)

Combining Eqs. (4.7) with (4.8) we are led finally to the differential equation
for the stream function

Vet = 25) +w,, (1 — 25) + 20, %l =0, (4.9)

In this equation cp is to be considered as a function of y2 —|—zp‘j computed by means
of Eq. (4.6) and the known relations between ¢, ¢ and gq.

The stream function is particularly useful in the study of flows with pre-
scribed fixed boundaries. The presence of rigid walls subjects the velocity poten-
tial to the boundary condition &@/d% =0, which guarantees that the flow does
not cross the boundary; the stream function, on the other hand, satisfies the
houndary condition g =const, which means that the boundary curve must be
a streamline. In general, it is much easier to find the solution of a partial dif-
ferential equation with prescribed boundary values (DIRICHLET’S problem) than
to find a solution with specified normal derivative on the boundary (NEUMANN’s
problem). This fact explains the importance of the stream function in the theory
of two-dimensional flows around given profiles.

The significance of the system (4.2) is well illustrated by the limit case of an
incompressible fluid with density 1. In this case, the system reduces to the
classical Cauchy-Riemann equations

P =1y, =1y, (4.10)



