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Series Preface

Mathematics is playing an ever more important role in the physical and
biological sciences, provoking a blurring of boundaries between scientific
disciplines and a resurgence of interest in the modern as well as the classical
techniques of applied mathematics. This renewal of interest, both in research
and teaching, has led to the establishment of the series Texts in. Applied
Mathematics (TAM).

The development of new courses is a natural consequence of a high level of
excitement on the research frontier as newer techniques, such as numerical and
symbolic computer systems, dynamical systems, and chaos, mix with and
reinforce the traditional methods of applied mathematics. Thus, the purpose of
this textbook series is to meet the current and future needs of these advances and
to encourage the teaching of new courses.

TAM will publish textbooks suitable for use in advanced undergraduate and
beginning graduate courses, and will complement the Applied Mathematical
Sciences (AMS) series, which will focus on advanced textbooks and research-
level monographs.

Pasadena, California J.E. Marsden
Providence, Rhode Island E L. Sirovich
Houston, Texas M. Golubitsky

College Park, Maryland S.S. Antman



Preface

Symmetry and mechanics have been close partners since the time of the
founding masters: Newton, Euler, Lagrange, Laplace, Poisson, Jacobi, Ha-
milton, Kelvin, Routh, Riemann, Noether, Poincaré, Einstein, Schrodinger,
Cartan, Dirac, and to this day, symmetry has continued to play a strong
role, especially with the modern work of Kolmogorov, Arnold, Moser, Kir-
illov, Kostant, Smale, Souriau, Guillemin, Sternberg, and many others. This
book is about these developments, with an emphasis on concrete applica-
tions that we hope will make it accessible to a wide variety of readers,
especially senior undergraduate and graduate students in science and en-
gineering. i

The geometric point of view in mechanics combined with solid analy-
sis has been a phenomenal success in linking various diverse areas, both
within and across standard disciplinary lines. It has provided both insight
into fundamental issues in mechanics (such as variational and Hamiltonian
structures in continuum mechanics, fluid mechanics, and plasma physics)
and provided useful tools in specific models such as new stability and bifur-
cation criteria using the.energy—Casimir and energy-momentum methods,
new numerical codes based on geometrically exact update procedures and
variational integrators, and new reorientation techniques in control theory
and robotics.

Symmetry was already widely used in mechanics by the founders of the
subject, and has been developed considerably in recent times in such di-
verse phenomena as reduction, stability, bifurcation and solution symmetry
breaking relative to a given system symmetry group, methods of finding
explicit solutions for integrable systems, and a deeper understanding of spe-



x Preface

cial systems, such as the Kowalewski top. We hope this book will provide
a reasonable avenue to, and foundation for, these exciting developments.

Because of the extensive and complex set of possible directions in which
one can develop the theory, we have provided a fairly lengthy introduction.
It is intended to be read lightly at the beginning and then consulted from
time to time as the text itself is read.

This volume contains much of the basic theory of mechanics and should
prove to be a useful foundation for further, as well as more specialized,
topics. Due to space limitations we warn the reader that many important
topics in mechanics are not treated in this volume. We are preparing a
second volume on general reduction theory and its applications. With luck,
a little support, and yet more hard work, it will be available in the near
future.

Solutions Manual. A solution manual is available for instructors. It

contains corplete solutions to many of the exercises, as well as other sup-

plementary comments.- For further information, see
http://www.cds.caltech.edu/ marsden/books/.

Internet Supplements. To keep the size of the book within reason,
we are making some material available (free) on the Internet. These are a
collection of sections whose omission does not interfere with the main flow of
the text. See http://www.cds.caltech.edu/ "marsden/books/. Updates
and information about the book can also be found at this website.

What Is New in the Second Edition? In this second edition, the main
structural changes are the creation of a solutions manual (along with many
more exercises in the text) and the Internet supplements. The Internet
supplements contain, for example, the material on the Maslov index that
was not needed for the main flow of the book. As for the substance of the
text, much of the book was rewritten throughout to improve the flow of
material and to correct inaccuracies. Some examples: The material on the
Hamilton—Jacobi theory was completely rewritten, a new section on Routh
reduction (§8.9) was added, Chapter 9 on Lie groups was substantially
improved and expanded. The presentation of examples of coadjoint orbits
(Chapter 14) was improved by stressing matrix methods throughout.

Acknowledgment's. We thank Rudolf Schmid, Rich Spencer, and Alan
Weinstein for helping with an early set of notes that helped us on our
way. Our many colleagues, students, and readers, especially Henry Abar-
banel, Vladimir Arnold, Larry Bates, Michael Berry, Tony Bloch, Dong-Eui
Chang, Hans Duistermaat, Marty Golubitsky, Mark Gotay, George Haller,
Aaron Hershman, Darryl Holm, Phil Holmes, Sameer Jalnapurkar, Edgar
Knobloch, P.S. Krishnaprasad, Naomi Leonard, Debra Lewis, Robert Lit-
tlejohn, Richard Montgomery, Phil Morrison, Richard Murray, Peter Olver,
Oliver O’Reilly, Juan-Pablo Ortega, George Patrick, Octavian Popp, Ma-
son Porter, Matthias Reinsch, Shankar Sastry, Tanya Schmah, Juan Simo,
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Hans Troger, Loc Vu-Quoc, Alan Weinstein, and Steve Wiggins, have our
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tively thank all our students and colleagues who have used these notes and
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We are also indebted to Carol Cook, Anne Kao, Nawoyuki Gregory Kub-
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for their special effort with the typesetting, the scripts for automatic con-
version of reférences, the macros for indexing, and the figures (including
the cover illustration). We also thank the staff at Springer-Verlag, espe-
cially Achi Dosanjh, Laura Carlson, MaryAnn Cottone, David Kramer,
Ken Dreyhaupt, and Riidiger Gebauer for their skillful editorial work and
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1

Introduction and Overview

1.1 Lagrangian and Hamiltonian Formalisms

Mechanics deals with the dynamics of particles, rigid bodies, continuous
media (fluid, plasma, and elastic materials), and field theories such as elec-
tromagnetism and gravity. This theory plays a crucial role in quantum me-
chanics, control theory, and other areas of physics, engineering, and even
chemistry and biology. Clearly, mechanics is a large subject that plays a
fundamental role in science. Mechanics also played a key part in the devel-
opment of mathematics. Starting with the creation of calculus stimulated
by Newton's mechanics, it continues today with exciting developments in
group representations, geometry, and topology: these mathematical devel-
opments in turn are being applied to interesting problems in physics and
engineering.

Symmetry plays an important role in mechanics, from fundamental for-
mulations of basic principles to concrete applications, such as stability cri-
teria for rotating structures. The theme of this book is to emphasize the
role of symmetry in various aspects of mechanics.

This introduction treats a collection of topics fairly rapidly. The student
should not expect to understand everything perfectly at this stage. We will
return to many of the topics in subsequent chapters.

Lagrangian and Hamiltonian Mechanics. Mechanics has two main
points of view, Lagrangian mechanics and Hamiltonian mechanics.
In one sense, Lagrangian mechanics is more fundamental, since it is based
on variational principles and it is what generalizes most directly to the gen-
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eral relativistic context. In another sense, Hamiltonian mechanics is more
fundamental, since it is based directly on the energy concept and it is what
is more closely tied to quantum mechanics. Fortunately, in many cases these
branches are equivalent, as we shall see in detail in Chapter 7. Needless to
say, the merger of quantum mechanics and general relativity remains one
of the main outstanding problems of mechanics. In fact, the methods of
mechanics and symmetry are important ingredients in the developments of
string theory, which has attempted this merger.

Lagrangian Mechanics. The Lagrangian formulation of mechanics is
based on the observation that there are variational principles behind the
fundamental laws of force balance as given by Newton’s law F = ma.
One chooses a configuration space @ with coordinates ¢*, i = 1,...,n,
that describe the configuration of the system under study. Then one
introduces the Lagrangian L(g',¢%,t), which is shorthand notation for
L(q', ... ,q".¢",...,¢"t). Usually, L is the kinetic minus the potential
energy of the system, and one takes §* = dg'/dt to be the system velocity.
The wariational principle of Hamilton states

b
5/ Lg%, ¢',t)dt = 0. (1.1.1)
Q

In this principle, we choose curves g*(t) joining two fixed points in Q over
a fixed time interval [a, b] and calculate the integral regarded as a function
of this curve. Hamilton’s principle states that this function has a critical
point at a solution within the space of curves. If we let 6g* be a variation,
that is, the derivative of a family of curves with respect to a parameter,
then by the chain rule, (1.1.1) is equivalent to

Z/( ¢ aLa )dt_O (1.1.2)

for all variations éq*.
Using equality of mixed partials, one finds that

g 4o
6q —dtéq.

Using this, integrating the second term of (1.1.2) by parts, and employing
the boundary conditions é¢* =0 at t = a and b, (1.1.2) becomes

2. 1oL d /6L z_
;/a [W_E <6qi)] 8q' dt = 0. (1.1.3)

Since é¢* is arbitrary (apart from being zero at the endpoints), (1.1.2) is
equivalent to the FEuler-Lagrange equations
doL oL
dt 8¢t  Oqt

=0, i=1,...,n (1.1.4)



