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Preface to the Second
Edition

This edition does not involve any major reorganization of the basic plan
of the book; however, there are still a substantial number of changes. The
inaccuracies and typos that were pointed out, or detected by us, and that
were previously posted on our web site, have been corrected. Here and
there, clarifying remarks have been added. Some new exercises have been
added, often to reflect a result we consider interesting that did not find its
way into the main body of the text. Some exercises have been dropped,
either because the new presentation covers them, or because they were too
difficult or unclear. The general principles of Chapter 4 have been updated
by the addition of Theorem 4.4.13 and Lemmas 4.1.23, 4.1.24, and 4.6.5.

More substantial changes have also been incorporated in the text.

1. A new section on concentration inequalities (Section 2.4) has been
added. It overviews techniques, ranging from martingale methods
to Talagrand’s inequalities, to obtain upper bound on exponentially
negligible events.

2. A new section dealing with a metric framework for large deviations
(Section 4.7) has been added.

3. A new section explaining the basic ingredients of a weak convergence
approach to large deviations (Section 6.6) has been added. This sec-
tion largely follows the recent text of Dupuis and Ellis, and provides
yet another approach to the proof of Sanov’s theorem.

4. A new subsection with refinements of the Gibbs conditioning principle
(Section 7.3.3) has been added.

5. Section 7.2 dealing with sampling without replacement has been com-
pletely rewritten. This is a much stronger version of the results, which
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viii PREFACE TO THE SECOND EDITION

also provides an alternative proof of Mogulskii’s theorem. This ad-
vance was possible by introducing an appropriate coupling.

The added material preserves the numbering of the first edition. In par-
ticular, theorems, lemmas and definitions in the first edition have retained
the same numbers, although some exercises may now be labeled differently.

Another change concerns the bibliography: The historical notes have
been rewritten with more than 100 entries added to the bibliography, both
to rectify some omissions in the first edition and to reflect some advances
that have been made since then. As in the first edition, no claim is being
made for completeness.

The web site http://www-ee.technion.ac.il/~ zeitouni/cor.ps will contain
corrections, additions, etc. related to this edition. Readers are strongly
encouraged to send us their corrections or suggestions.

We thank Tiefeng Jiang for a preprint of [Jia95], on which Section 4.7
is based. The help of Alex de Acosta, Peter Eichelsbacher, loannis Kon-
toyiannis, Stephen Turner, and Tim Zajic in suggesting improvements to
this edition is gratefully acknowledged. We conclude this preface by thank-
ing our editor, John Kimmel, and his staff at Springer for their help in
producing this edition.

STANFORD, CALIFORNIA AMIR DEMBO
HAIFA, ISRAEL OFER ZEITOUNI
DECEMBER 1997



Preface to the First
Edition

In recent years, there has been renewed interest in the (old) topic of large
deviations, namely, the asymptotic computation of small probabilities on an
exponential scale. (Although the term large deviations historically was also
used for asymptotic expositions off the CLT regime, we always take large
deviations to mean the evaluation of small probabilities on an exponential
scale). The reasons for this interest are twofold. On the one hand, starting
with Donsker and Varadhan, a general foundation was laid that allowed one
to point out several “general” tricks that seem to work in diverse situations.
On the other hand, large deviations estimates have proved to be the crucial
tool required to handle many questions in statistics, engineering, statistical
mechanics, and applied probability.

The field of large deviations is now developed enough to enable one
to expose the basic ideas and representative applications in a systematic
way. Indeed, such treatises exist; see, e.g., the books of Ellis and Deuschel-
Stroock [EN85, DeuS89b]. However, in view of the diversity of the applica-
tions, there is a wide range in the backgrounds of those who need to apply
the theory. This book is an attempt to provide a rigorous exposition of the
theory, which is geared towards such different audiences. We believe that a
field as technical as ours calls for a rigorous presentation. Running the risk
of satisfying nobody, we tried to expose large deviations in such a way that
the principles are first discussed in a relatively simple, finite dimensional
setting, and the abstraction that follows is motivated and based on it and
on real applications that make use of the “simple” estimates. This is also
the reason for our putting our emphasis on the projective limit approach,
which is the natural tool to pass from simple finite dimensional statements
to abstract ones.

With' the recent explosion in the variety of problems in which large
deviations estimates have been used, it is only natural that the collection

ix



X PREFACE TO THE FIRST EDITION

of applications discussed in this book reflects our taste and interest, as well
as applications in which we have been involved. Obviously, it does not
represent the most important or the deepest possible ones.

The material in this book can serve as a basis for two types of courses:
The first, geared mainly towards the finite dimensional application, could be
centered around the material of Chapters 2 and 3 (excluding Section 2.1.3
and the proof of Lemma 2.3.12). A more extensive, semester-long course
would cover the first four chapters (possibly excluding Section 4.5.3) and
either Chapter 5 or Chapter 6, which are independent of each other. The
mathematical sophistication required from the reader runs from a senior
undergraduate level in mathematics/statistics/engineering (for Chapters 2
and 3) to advanced graduate level for the latter parts of the book.

Each section ends with exercises. While some of those are routine appli-
cations of the material described in the section, most of them provide new
insight (in the form of related computations, counterexamples, or refine-
ments of the core material) or new applications, and thus form an integral
part of our exposition. Many “hinted” exercises are actually theorems with
a sketch of the proof.

Each chapter ends with historical notes and references. While a com-
plete bibliography of the large deviations literature would require a separate
volume, we have tried to give due credit to authors whose results are related
to our exposition. Although we were in no doubt that our efforts could not
be completely successful, we believe that an incomplete historical overview
of the field is better than no overview at all. We have not hesitated to
ignore references that deal with large deviations problems other than those
we deal with, and even for the latter, we provide an indication to the lit-
erature rather than an exhaustive list. We apologize in advance to those
authors who are not given due credit.

Any reader of this book will recognize immediately the immense impact
of the Deuschel-Stroock book [DeuS89b} on our exposition. We are grateful
to Dan Stroock for teaching one of us (0.Z.) large deviations, for provid-
ing us with an early copy of [DeuS89b}, and for his advice. O.Z. is also
indebted to Sanjoy Mitter for his hospitality at the Laboratory for Infor-
mation and Decision Systems at MIT, where this project was initiated. A
course based on preliminary drafts of this book was taught at Stanford and
at the Technion. The comments of people who attended these courses—in
particular, the comments and suggestions of Andrew Nobel, Yuval Peres,
and Tim Zajic—contributed much to correct mistakes and omissions. We
wish to thank Sam Karlin for motivating us to derive the results of Sections
3.2 and 5.5 by suggesting their application in molecular biology. We thank
Tom Cover and Joy Thomas for a preprint of [CT91], which influenced
our treatment of Sections 2.1.1 and 3.4. The help of Wlodek Bryc, Marty
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Day, Gerald Edgar, Alex loffe, Dima Ioffe, Sam Karlin, Eddy Mayer-Wolf,
and Adam Shwartz in suggesting improvements, clarifying omissions, and
correcting outright mistakes is gratefully acknowledged. We thank Alex de
Acosta, Richard Ellis, Richard Olshen, Zeev Schuss and Sandy Zabell for
helping us to put things in their correct historical perspective. Finally, we
were fortunate to benefit from the superb typing and editing job of Lesley
Price, who helped us with the intricacies of IXTjzX and the English language.

STANFORD, CALIFORNIA AMIR DEMBO
HAIFA, ISRAEL OFER ZEITOUNI
AugusT 1992
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Chapter 1

Introduction

1.1 Rare Events and Large Deviations

This book is concerned with the study of the probabilities of very rare
events. To understand why rare events are important at all, one only has
to think of a lottery to be convinced that rare events (such as hitting the
jackpot) can have an enormous impact.

If any mathematics is to be involved, it must be quantified what is meant
by rare. Having done so, a theory of rare events should provide an analysis
of the rarity of these events. It is the scope of the theory of large deviations
to answer both these questions. Unfortunately, as Deuschel and Stroock
pointed out in the introduction of [DeuS89b], there is no real “theory” of
large deviations. Rather, besides the basic definitions that by now are stan-
dard, a variety of tools are available that allow analysis of small probability
events. Often, the same answer may be reached by using different paths
that seem completely unrelated. It is the goal of this book to explore some
of these tools and show their strength in a variety of applications. The
approach taken here emphasizes making probabilistic estimates in a finite
dimensional setting and using analytical considerations whenever necessary
to lift up these estimates to the particular situation of interest. In so do-
ing, a particular device, namely, the projective limit approach of Dawson
and Girtner, will play an important role in our presentation. Although the
reader is exposed to the beautiful convex analysis ideas that have been the
driving power behind the developrent of the large deviations theory, it is
the projective limit approach that often allows sharp results to be obtained
in general situations. To emphasize this point, derivations for many of the
large deviations theorems using this approach have been provided.



2 1. INTRODUCTION

The uninitiated reader must wonder, at this point, what exactly is meant
by large deviations. Although precise definitions and statements are post-
poned to the next section, a particular example is discussed here to provide
both motivation and some insights as to what this book is about. Let
us begin with the most classical topic of probability theory, namely, the
behavior of the empirical mean of independent, identically distributed ran-
dom variables. Let X, Xa,..., X, be a sequence of independent, standard
Normal, real-valued random variables, and consider the empirical mean
Sp = % Yoy Xi. Since S, is again a Normal random variable with zero
mean and variance 1/n, it follows that for any § > 0,

P(]S |26) =2 0, (1.1.1)
and, for any interval A,
P(vasa € A) —2 —\/15_—” /A =24z . (1.1.2)
Note now that
P(8] > 8) =1 - —— / =g
therefore,
2
logP(lS |>68) ;=2 — % (1.1.3)

Equation (1.1.3) is an exa.mple of a large deviations statement: The “typi-
cal” value of S, is, by (1.1.2), of the order 1/4/n, but with small probability
(of the order of e~"6*/2), |§,| takes relatively large values.

Since both (1.1.1) and (1.1.2) remain valid as long as {X;} are inde-
pendent, identically distributed (i.i.d.) random variables of zero mean and
unit variance, it could be asked whether (1.1.3) also holds for non-Normal
{X:}. The answer is that while the limit of n=!log P (18] > 6) always
exists, its value depends on the distribution of X;. This is precisely the
content of Cramér’s theorem derived in Chapter 2.

The preceding analysis is not limited to the case of real-valued random
variables. With a somewhat more elaborate proof, a similar result holds
for d-dimensional, i.i.d. random vectors. Moreover, the independence as-
‘sumption can be replaced by appropriate notions of weak dependence. For
example, {X;} may be a realization of a Markov chain. This is discussed
in Chapter 2 and more generally in Chapter 6. However, some restriction
on the dependence must be made, for examples abound in which the rate
of convergence in the law of large numbers is not exponential.
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Once the asymptotic rate of convergence of the probabilities
P(] 37, Xi| > 6) is available for every distribution of X; satisfying
certain moment conditions, it may be computed in particular for
P(|X 37, f(Xi)| = 6), where f is an arbitrary bounded measurable func-
tion. Similarly, from the corresponding results in IR?, tight bounds may be
obtained on the asymptotic decay rate of

).

P ( Y fux)

i=1

where fy,..., fq are arbitrary bounded and measurable functions. From
here, it is only a relatively small logical step to ask about the rate of con-
vergence of the empirical measure 1 3°"_| 6x,, where 6x, denotes the (ran-
dom) mesasure concentrated at X;, to the distribution of X;. This is the
content of Sanov’s impressive theorem and its several extensions discussed
in Chapter 6. It should be noted here that Sanov’s theorem provides a quite
unexpected link between Large Deviations, Statistical Mechanics, and In-
formation Theory.

>6,...,

1 n
- gfl(x.-)

Another class of large deviations questions involves the sample path of
stochastic processes. Specifically, if X“(t) denotes a family of processes that
converge, as ¢ — 0, to some deterministic limit, it may be asked what the
rate of this convergence is. This question, treated first by Mogulskii and
Schilder in the context, respectively, of a random walk and of the Brownian
motion, is explored in Chapter 5, which culminates in the Freidlin—-Wentzell
theory for the analysis of dynamical systems. This theory has implications
to the study of partial differential equations with small parameters.

It is appropriate at this point to return to the applications part of the
title of this book, in the context of the simple example described before. As
a first application, suppose that the mean of the Normal random variables
X; is unknown and, based on the observation (X, Xs3,...,X,), one tries
to decide whether the mean is —1 or 1. A reasonable, and commonly
used decision rule is as follows: Decide that the mean is 1 whenever S, >
0. The probability of error when using this rule is the probability that,
when the mean is —1, the empirical mean is nonnegative. This is exactly
the computation encountered in the context of Cramér’s theorem. This
application is addressed in Chapters 3 and 7 along with its generalization
to more than two alternatives and to weakly dependent random variables.

Another important application concerns conditioning on rare events.
The best known example of such a conditioning is related to Gibbs condi-
tioning in statistical mechanics, which has found many applications in the
seemingly unrelated areas of image processing, computer vision, VLSI de-
sign, and nonlinear programming. To illustrate this application, we return
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to the example where {X:} are i.i.d. standard Normal random variables,
and assume that S, > 1. To find the conditional distribution of X; given
this rare event, observe that it may be expressed as P(X;|X; > Y), where
Y=n- E?:z X, is independent of X; and has a Normal distribution with
mean n and variance (n — 1). By an asymptotic evaluation of the relevant
integrals, it can be deduced that as n — oo, the conditional distribution
converges to a Normal distribution of mean 1 and unit variance. When the
marginal distribution of the X; is not Normal, such a direct computation
becomes difficult, and it is reassuring to learn that the limiting behavior of
the conditional distribution may be found using large deviations bounds.
These results are first obtained in Chapter 3 for X; taking values in a finite
set, whereas the general case is presented in Chapter 7.

A good deal of the preliminary material required to be able to follow
the proofs in the book is provided in the Appendix section. These appen-
dices are not intended to replace textbooks on analysis, topology, measure
theory, or differential equations. Their inclusion is to allow readers needing
a reminder of basic results to find them in this book instead of having to
look elsewhere.

1.2 The Large Deviation Principle

The large deviation principle (LDP) characterizes the limiting behavior,
as ¢ — 0, of a family of probability measures {s.} on (X, B) in terms of
a mate function. This characterization is via asymptotic upper and lower
exponential bounds on the values that . assigns to measurable subsets of
X. Throughout, X is a topological space so that open and closed subsets
of X are well-defined, and the simplest situation is when elements of By,
the Borel o-field on X, are of interest. To reduce possible measurability
questions, all probability spaces in this book are assumed to have been
completed, and, with some abuse of notations, Bx always denotes the thus
completed Borel o-field.

Definitions A rate function I is a lower semicontinuous mapping I : X —
[0,00] (such that for all a € [0,00), the level set ¥ (a)={z : I(z) < a} is
a closed subset of X). A good rate function is a rate function for which all
the level sets W () are compact subsets of X. The effective domain of I,
denoted Dy, is the set of points in X of finite rate, namely, D;2{z : I(z) <
o0}. When no confusion occurs, we refer to Dy as the domain of I.

Note that if X is a metric space, the lower semicontinuity property may
be checked on sequences, i.e., I is lower semicontinuous if and only if
liminf,, . I(z,) > I(z) for all £ € X. A consequence of a rate func-
tion being good is that its infimum is achieved over closed sets.
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The following standard notation is used throughout this book. For any
set I, I' denotes the closure of ', I'° the interior of I, and I’ the complement
of I'. The infimum of a function over an empty set is interpreted as oo.

Definition {u.} satisfies the large deviation principle with a rate function
Iif forallT' € B,

— inf I(x) < liminf €log pe(T'") < limsupelog pe(I') < — inf I(x). (1.2.4)
z€ele «—0 e—0 z€T

The right- and left-hand sides of (1.2.4) are referred to as the upper and
lower bounds, respectively.

Remark: Note that in (1.2.4), B need not necessarily be the Borel o-field.
Thus, there can be a separation between the sets on which probability may
be assigned and the values of the bounds. In particular, (1.2.4) makes
sense even if some open sets are not measurable. Except for this section,
we always assume that Bx € B unless explicitly stated otherwise.

The sentence “u. satisfies the LDP” is used as shorthand for “{s.} satisfies
the large deviation principle with rate function I.” It is obvious that if s,
satisfies the LDP and I € B is such that

inf I(z) = inf I(z)2Ir, (1.2.5)
z€el° zeT
then
lintl) elog p.(I') = —Ip . (1.2.6)

A set I' that satisfies (1.2.5) is called an I continuity set. In general, the
LDP implies a precise limit in (1.2.6) only for I continuity sets. Finer
results may well be derived on a case-by-case basis for specific families of
measures {u.} and particular sets. While such results do not fall within
our definition of the LDP, a few illustrative examples are included in this
book. (See Sections 2.1 and 3.7.)

Some remarks on the definition now seem in order. Note first that in
any situation involving non-atomic measures, p.({z}) = O for every z in
X. Thus, if the lower bound of (1.2.4) was to hold with the infimum over I'
instead of I'°, it would have to be concluded that I(z) = oo, contradicting
the upper bound of (1.2.4) because u(X) = 1 for all e. Thus, some topo-
logical restrictions are necessary, and the definition of the LDP codifies a
particularly convenient way of stating asymptotic results that, on the one
hand, are accurate enough to be useful and, on the other hand, are loose
enough to be correct.

Since p.(X) = 1 for all ¢, it is necessary that infzcx I(x) = O for the
upper bound to hold. When I is a good rate function, this means that



