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Phase Transition Dynamics

Phase transition dynamics is of central importance in current condensed matter physics.
Akira Onuki provides a systematic treatment of a wide variety of topics including
critical dynamics, phase ordering, defect dynamics, nucleation, and pattern formation by
constructing time-dependent Ginzburg-Landau models for various systems in physics,
metallurgy, and polymer science.

The book begins with a summary of advanced statistical-mechanical theories including
the renormalization group theory applied to spin and fluid systems. Fundamental dynami-
cal theories are then reviewed before the kinetics of phase ordering, spinodal decomposi-
tion, and nucleation are covered in depth in the main part of the book. The phase transition
dynamics of real systems are discussed, treating interdisciplinary problems in a unified
manner. New topics include supercritical fluid dynamics, boiling near the critical point,
stress—diffusion coupling in polymers, patterns and heterogeneities in gels, and mesoscopic
dynamics at structural phase transitions in solids. In the final chapter, theoretical and ex-
perimental approaches to shear flow problems in fluids are reviewed.

Phase Transition Dynamics provides a comprehensive treatment of the study of phase
transitions. Building on the statics of phase transitions, covered in many introductory
textbooks, it will be essential reading for researchers and advanced graduate students in
physics, chemistry, metallurgy and polymer science.

AKIRA ONUKI obtained his PhD from the University of Tokyo. Since 1983 he has held
a position at Kyoto University, taking up his current professorship in 1991. He has made
important contributions to the study of phase transition dynamics in both fluid and solid
systems.



Preface

This book aims to elucidate the current status of research in phase transition dynamics.
Because the topics treated are very wide, a unified phenomenological time-dependent
Ginzburg-Landau approach is used, and applied to dynamics near the critical point. Into
the simple Ginzburg-Landau theory for a certain order parameter, we introduce a new
property or situation such as elasticity in solids, viscoelasticity in polymers, shear fiow in
fluids, or heat flow in He near the superfluid transition. By doing so, we encounter a rich
class of problems on mesoscopic spatial scales. A merit of this approach is that we can
understand such diverse problems in depth using universal concepts.

The first four chapters (Part one) deal with static situations, mainly of critical phen-
omena, and introduce some new results that would stand by themselves. However, the main
purpose of Part one is to present the definitions of many fundamental quantities and intro-
duce various phase transitions. So it should be read before Parts two and three which deal
with dynamic situations. Chapter 5 is also introductory, reviewing fundamental dynamic
theories, the scheme of Langevin equations and the linear response theory. Chapter 6 treats
critical dynamics in (i) classical fluids near the gas-liquid and consolute critical points
and (ii) “He near the superfluid transition. Chapter 7 focuses on rather special problems
in complex fluids: (i) effects of viscoelasticity on composition fluctuations in polymer
systems; and (ii) volume phase transitions and heterogeneity effects in gels. Chapters 8
and 9 (in Part three) constitute the main part of this book, and consider the kinetics of
phase ordering, spinodal decomposition, and nucleation. Motions of interfaces and vortices
are examined in the Ginzburg-Landau models. Chapter 10 focuses on dynamics in solids,
including phase separation, order—disorder and martensitic transitions, shape instability in
hydrogen-metal systems, and surface instability in metal films. These problems have hith-
erto been very inadequately studied and most papers are difficult to understand for those
outside the field, so it was important to write this chapter in a coherent fashion, though it has
turned out to be a most difficult task. I believe that many interesting dynamical problems
remain virtually unexplored in solids, because such phenomena have been examined either
too microscopically in solid-state physics without giving due respect to long-range elastic
effects or with technologically-oriented objectives in engineering. Chapter 11 is on shear
flow problems in fluids, a topic on which a great number of theoretical and experimental
papers appeared in the 1980s and 1990s. This book thus covers a wide range of phase
transition dynamics. Of course, many important problems had to be omitted.

I have benefited from discussions with many people working in the fields of low-
temperature physics, statistical physics, polymer science, and metallurgy. Particularly

ix




X Preface

useful suggestions were given by H. Meyer, Y. Oono, K. Kawasaki, T. Ohta, M. Doi,
T. Hashimoto, H. Tanaka, M. Shibayama, T. Miyazaki, T. Koyama, and Y. Yamada. Thanks
are due to R. Yamamoto, K. Kanemitsu, and A. Furukawa for drawing some of the figures.
It is with deep sadness that I record the deaths of T. Tanaka and K. Hamano. It is a
great pleasure to be able to acknowledge their memorable contributions to Chapters 7
and 11, respectively. Finally, I apologize to my students, colleagues, and family, for any
difficulty they may have experienced because I have been so busy with this extremely
time-consuming undertaking.

Akira Onuki
Kyoto, Japan




Preface

Contents

Part one: Statics

1  Spin systems and fluids

1.1
1.2
13

Spin models
One-component fluids
Binary fluid mixtures

Appendix 1A Correlations with the stress tensor
References

2 Critical phenomena and scaling

2.1
22
23
24

General aspects

Critical phenomena in one-component fluids
Critical phenomena in binary fluid mixtures
“He near the superfluid transition

Appendix 2A Calculation in non-azeotropic cases
References

3  Mean field theories

3.1
32
33
34
35

Landau theory

Tricritical behavior

Bragg-Williams approximation

van der Waals theory

Mean field theories for polymers and gels

Appendix 3A Finite-strain theory
References

4  Advanced theories in statics

4.1
42
43
4.4
4.5

Ginzburg-Landau-Wilson free energy

Mapping onto fluids

Static renormalization group theory

Two-phase coexistence and surface tension

Vortices in systems with a complex order parameter

Appendix 4A Calculation of the critical exponent »
Appendix 4B Random phase approximation for polymers

page ix
1

3
3
10
23
30
32

34
34
45
53
66
74
75

78
78
84
90
99
104
119
122

124
124
133
144
162
173
178
179




vi

Contents

Appendix 4C Renormalization group equations for n-component systems
Appendix 4D Calculation of a free-energy correction

Appendix 4E Calculation of the structure factors

Appendix 4F Specific heat in two-phase coexistence

References

Part two: Dynamic models and dynamics in fluids and polymers

Dynamic models

5.1  Langevin equation for a single particle

5.2 Nonlinear Langevin equations with many variables

3.3 Simple time-dependent Ginzburg-Landau models

5.4  Linear response

Appendix 5A Derivation of the Fokker-Planck equation

Appendix 5B Projection operator method

Appendix 5C Time reversal symmetry in equilibrium time-correlation
functions

Appendix 5D Renormalization group calculation in purely dissipative
dynamics

Appendix 5E Microscopic expressions for the stress tensor and energy current

References

Dynamics in fluids

6.1  Hydrodynamic interaction in near-critical fluids
6.2 Critical dynamics in one-component fluids

6.3  Piston effect

6.4  Supercritical fluid hydrodynamics

6.5  Critical dynamics in binary fluid mixtures

6.6  Critical dynamics near the superfluid transition
6.7  “He near the superfluid transition in heat flow
Appendix 6A Derivation of the reversible stress tensor
Appendix 6B Calculation in the mode coupling theory
Appendix 6C Steady-state distribution in heat flow
Appendix 6D Calculation of the piston effect
References

Dynamics in polymers and gels

7.1 Viscoelastic binary mixtures

7.2 Dynamics in gels

7.3 Heterogeneities in the network structure

Appendix 7A Single-chain dynamics in a polymer melt
Appendix 7B 'Two-fluid dynamics of polymer biends
Appendix 7C Calculation of the time-correlation function
Appendix 7D Stress tensor in polymer solutions

180
181
182
183
184

189

191
191
198
203
211
217
217

222

222
223
224

227
227
237
252
265
2N
281
298
307
308
309
310
311

317
317
335
351
359
360
362
362




Contents

Appendix 7E Elimination of the transverse degrees of freedom
Appendix 7F Calculation for weakly charged polymers
Appendix 7G Surface modes of a uniaxial gel

References

Part three: Dynamics of phase changes

Phase ordering and defect dynamics

8.1 Phase ordering in nonconserved systems

8.2 Inmterface dynamics in nonconserved systems

8.3 Spinodal decomposition in conserved systems

8.4  Interface dynamics in conserved systems

85  Hydrodynamic interaction in fluids

8.6 Spinodal decomposition and boiling in one-component fluids

8.7  Adiabatic spinodal decomposition

8.8 Periodic spinodal decomposition

8.9  Viscoelastic spinodal decomposition in polymers and gels

8.10  Vortex moticn and mutual friction

Appendix 8A Generalizations and variations of the Porod law

Appendix 8B The pair correlation function in the nonconserved case

Appendix 8C The Kawasaki-Yalabik~Gunton theory applied to periodic
quench

Appendix 8D The structure factor tail for n = 2

Appendix 8E Differential geometry

Appendix 8F Calculation in the Langer-Bar-on-Miller theory

Appendix 8G The Stefan problem for a sphere and a circle

Appendix 8H The velocity and pressure close to the interface

Appendix 8] Calculation of vortex motion

References

Nucleation

9.1  Droplet evolution equation

9.2 Birth of droplets

9.3 Growth of droplets

9.4  Nucleation in one-component fluids

9.5  Nucleation at very low temperatures

9.6  Viscoelastic nucleation in polymers

9.7 Intrinsic critical velocity in superfluid helium

Appendix 9A Relaxation to the steady droplet distribution
Appendix 9B The nucleation rate near the critical point
Appendix 9C The asymptotic scaling functions in droplet growth
Appendix 9D Moving domains in the dissipative regime
Appendix 9E Piston effect in the presence of growing droplets

vii

363
365
366
366

371

3
373
389
400
407
421
432
437
440
444
453
469
473

474
475
476
477
478
479
480
482

488
488
499
506
518
530
533
538
543
544
545
546
547



viii

Contents

Appendix SF Calculation of the quantum decay rate
References

10 Phase transition dynamics in solids
10.1  Phase separation in isotropic elastic theory
10.2  Phase separation in cubic solids
10.3  Order—disorder and improper martensitic phase transitions
10.4  Proper martensitic transitions
10.5 Macroscopic instability
10.6  Surface instability
Appendix 10A Elimination of the elastic field
Appendix 10B Elastic deformation around an ellipsoidal domain
Appendix 10C Analysis of the Jahn~Teller coupling
Appendix 10D Nonlocal interaction in 2D elastic theory
Appendix 10E Macroscopic modes of a sphere
Appendix 10F Surface modes on a planar surface
References

11 Phase transitions of fluids in shear flow
11.1  Near-critical fluids in shear
11.2 Shear-induced phase separation
11.3  Complex fluids at phase transitions in shear flow
11.4  Supercooled liquids in shear Aow
Appendix 11.A Correlation functions in velocity gradient
References

Index

547
548
552
556
577
584
593
615
622
625
629
630
631
632
635
635

641
642
668
684
686
700
701

710




Part one

Statics







1

Spin systems and fluids

To study equilibrium statistical physics, we will start with Ising spin systems (here-
after referred to as Ising systems), because they serve as important reference systems
in understanding various phase transitions [1]—{7].! We will then proceed to one- and
two-component fluids with short-range interaction, which are believed to be isomorphic
to Ising systems with respect to static critical behavior. We will treat equilibrium averages
of physical quantities such as the spin, number, and energy density and then show that
thermodynamic derivatives can be expressed in terms of fluctuation variances of some
density variables. Simple examples are the magnetic susceptibility in Ising systems and
the isothermal compressibility in one-component fluids expressed in terms of the corr-
elation function of the spin and density, respectively. More complex examples are the
constant-volume specific heat and the adiabatic compressibility in one- and two-component
fluids. For our purposes, as far as the thermodynamics is concerned, we need equal-time
correlations only in the long-wavelength limit. These relations have not been adequately
discussed in textbooks, and must be developed here to help us to correctly interpret various
experiments of thermodynamic derivatives. They will also be used in dynamic theories
in this book. We briefly summarize equilibrium thermodynamics in the light of these
equilibrium relations for Ising spin systems in Section 1.1, for one-component fluids in
Section 1.2, and for binary fluid mixtures in Section 1.3,

1.1 Spin models
1.1.1 Ising hamiltonian

Let each lattice point of a crystal lattice have two microscopic states. It is convenient
to introduce a spin variable 5;, which assumes the values | or —1 at lattice point ;. The
microscopic energy of this system, called the Ising spin hamiltonian, is composed of the
exchange interaction energy and the magnetic field energy,

H{S}:ch‘*"}'{mag\ (L1
where
Hex =~ ) Jsis,, (1.1.2)
<i,j>

! References are to be found at the end of cach chapter.




4 Spin svstems and fluids
Himag = —H Y si. (1.1.3)
i

The interaction between different spins is short-ranged and the summation in H.y is taken
over the nearest neighbor pairs i. j of the lattice points. The interaction energy between
spins is then ~J if paired spins have the same sign, while it is J for different signs. In the
case J > 0 the interaction is ferromagnetic, where all the spins align in one direction
at zero temperature. The magnetic field H is scaled appropriately such that it has the
dimension of energy. At zero magnetic field the system undergoes a second-order phase
transition at a critical temperature T.. The hamiltonian H mimics ferromagnetic systems
with uniaxial anisotropy.

In the case J < 0, the interaction is antiferromagnetic, where the neighboring paired
spins tend to be antiparallel at low temperatures. Let us consider a cubic lattice, which
may be divided into two sublattices, A and B, such that each lattice point and its nearest

neighbors belong to different sublattices. Here, we define the staggered spin variables S;
by

Si=s; (ecd), Si=-s5 (i€B). (1.1.4)

Then, Hex in terms of {S;} has the positive coupling |J| and is isomorphic to the ferromag-
netic exchange hamiltonian.

The Ising model may also describe a phase transition of binary alloys consisting of atoms
I and 2, such as Cu~Zn alloys. If each lattice point i is occupied by a single atom of either
of the two species, the occupation numbers ny; and ny; satisfy ny; +nz = 1. Vacancies and
interstitials are assumed to be nonexistent. If the nearest neighbor pairs have an interaction
energy exy; (K, L = 1, 2), the hamiltonian is written as

Hinl = Z ZEKUIK.‘RLJ' - ZZHK”K:’~ (1.1.5)
=

<ij>K.L i

where | and p are the chemical potentials of the two components. From (1.1.4) we may
introduce a spin variable,

S,'=2n1,‘—1=1—2112,', (116)

to obtain the Ising model (1.1.1) with

1 1 z
I = 3(—61\ — €22+ 2€1p), H= 5(#1 - u2) - 3(611 —€22), (L1

where z is the number of nearest neighbors with respect to each lattice point and is called
the coordination number.

1.1.2 Vector spin models

Many variations of spin models defined on lattices have been studied in the literature [8].
If the spin s; = (s1;..... ) on each lattice point is an n-component vector, its simplest
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hamiltonian reads

Hisl=— Y Jsi-s;—HY sii. (1.1.8)

<. > i

The first term. the exchange interaction, is assumed to be invariant with respect to rotation
in the spin space. The magnetic field # favors ordering of the first spin compenents si;.
The model with n = 2 is called the xy model, and the model with # = 3 the Heisenberg
model. It is known that the static critical behavior of the three-dimensional xy model is
isomorphic to that of “*He and 3He—*He mixtures near the superfluid transition, as will be
discussed later. However, there are many cases in which there is some anisotropy in the spin
space and, if one direction is energetically favored, the model reduces to the Ising model
asymptotically close to the critical point. Such anisotropy becomes increasingly important
near the critical point (or relevant in the terminology of renormalization group theory). As
another relevant perturbation, we may introduce a long-range interaction such as a dipolar
interaction.

1.1.3 Thermodynamics of Ising models

Each microscopic state of the Ising system is determined if all the values of spins (s} are
given. In thermal equilibrium, the probability of each microscopic state being realized is
given by the Boltzmann weight,

Pey((s]) = Z7 " expi—=pH(s)). (1.1.9)
where
B=1/T. (1.1,10)

In this book the absolute temperature multiplied by the Boltzmann constant kg = 1.381 x
1076 erg/K is simply written as T and is called the temperature [1],s0 T has the dimension
of energy. The normalization factor Z in (1.1.9) is called the partition function,

Z = exp(~BH{s}), (L.1.11)
]

where the summation is taken over all the microscopic states. The differential form for the
logarithm In Z becomes

d(InZ) = —(H)dB + B(M)dH = ~{Hex)dB + (M)dh, (1.1.12)
where the increments are infinitesimal,
h=8H =H/T. (1.1.13)

and M is the sum of the total spins,?
M=3"s. (1.1.14)

2 In this book the quantities, M, M, A/, ... in script, are fluctuating variables (dependent on the microscopic degrees of
freedom) and not thermodynamic ones.




6 Spin systems and fluids

Hereafter (- - -} is the average over the Boltzmann distribution (1.1.9). The usual choice of
the thermodynamic potential is the free energy,

F=-ThZ, (1.1.15)
and the independent intensive variables are T and H with
dF = -8dT — (M)dH, (L1.16)

where § = ((H) — F)/T is the entropy of the system.
We also consider the small change of the microscopic canonical distribution in (1.1.9)

for small changes, 8 — B + 88 and h —» h + §h. Explicitly writing its dependences on 8
and h, we obtain

Peq((s}: B+ 8B, h + 8R) = Peq({s}: B. Wy exp[—8HexdB + MR+ -], (LLI7)

where §Hox = Hex — (Hex) and §M = M — (M), To linear order in 88 and &k, the
change of the distribution is of the form,

8 Peq({s)) = Peq(IsD[—8Hex8B + 8.M8h + - ]. (1.1.18)

Therefore. the average of any physical variable 4 == 4{s} dependent on the spin configu-
rations is altered with respect to the change (1.1.18) as

S{A) = —(ASHex )88 + (ASMYSA + - - (1.1.19)
We set A = M and He, to obtain
Iz M .
=——= = ((8.M)7). 1.1.2
v S = (MY (1.1.20)

InZ  d(He)
s>~ 8B

= ((8He0)™), (1.121)

92 3 o
d‘ 1§z _ M ! Flew) _ — {8 MHey). (1.1.22)
dhdp OB ah

where V is the volume of the system, y is the isothermal magnetic susceptibility per unit
volume, h and § are treated as independent variables, and use has been made of (1.1.12).
Another frequently discussed quantity is the specific heat Cy at constant magnetic field

defined by’
cy = L{33 _l(i’@) (1.12%
PEyv\or),  vier ), o

Here we use —(3(H)/98)n = (9°InZ/9B") i to obtain

Cy = ((BH)Y)) T V. (1124

3 In this book all the specific heats in spin systems and fluids have the dimension of a number density.
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Namely, Cy is proportional to the variance of the total energy. We also introduce the
specific heat Cy at constant magnetization (M) by

~

sy MY a<M)) 1125
ch=T(~8—T-)M_VCH-T( pee )H/( SH ), (1.1.25)

From (3{M)/88)y = —{§HSEM) we obtain

Cur = [((BH)?) — (FHAM)? /(8. MDY ]/ VT2, (1.1.26)

where §H may be replaced by §Hex because 83 —§Hex = — H3.M is linearly proportional
to M. Itholds the inequality Cy > Cas. These two specific heats coincide in the disordered
phase at H = 0 where (673 M) = 0. We shall see that Cy in spin systems corresponds to
the specific heat Cy at constant volume in one-component fluids.

Positivity of Cy
Combinations of the variances of the form.,
Cap = ((8A) — (8ASB)?/((3B)?) = 0, (1.1.27)

will frequently appear in expressions for thermodynamic derivatives. Obviously C4p is the
minimum value of (8.4 — x6B)%) = ((8.4)%) — 2x(8.A88) + x2((65)2) > 0 as a function
of x, so it is positive-definite unless the ratio 8A/86B is a constant. Thus we have Cpy > 0.

1.1.4 Spin density and energy density variables
We may define the spin density variable §(r) by*

V) =) sisr—r). (1.1.28)

where r; is the position vector of the lattice site i. Then M = f a’rx@ (r) is the total spin
sum in (1.1.14). Through to Chapter S the equilibrium equal-time correlation functions will
be considered and the time variable will be suppressed. For the deviation § 1,Zr = 1& — 1/})
of the spin density, the pair correlation is defined by

gr—r) = (84 (rsg ), (1.1.29)

which is expected to decay to zero for a distance Ir — r'| much longer than a correlation

length in the thermodynamic limit (V — o¢). The Fourier transformation of g(r) is called
the structure factor,

Iky = fdrg(r) exp(ik - r), (1.1.30)

4 Hereafter, the quantities with a circumflex such as ¥, i, ., . .. are fluctuating quantities together with those in script such as
M. .A.B. ... However, the circumflex will be omitted from Chapter 3 onward, 10 avoid cumbersome ion .




