
COMBUSTION ENGINES

AN INTRODUCTION TO THEIR DESIGN, PERFORMANCE, AND SELECTION

WILEY

An Introduction to Their Design, Performance, and Selection

Aman Gupta, Shubham Sharma, and Sunny Narayan

WILEY

Copyright @ 2016 by Scrivener Publishing LLC. All rights reserved.

Co-published by John Wiley & Sons, Inc. Hoboken, New Jersey, and Scrivener Publishing LLC, Salem, Massachusetts.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate percopy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

For more information about Scrivener products please visit www.scrivenerpublishing.com,

Cover design by Kris Hackerott

Library of Congress Cataloging-in-Publication Data:

ISBN 978-1-119-28376-8

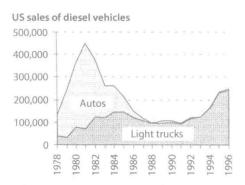
Printed in the United States of America

Scrivener Publishing

100 Cummings Center, Suite 541J Beverly, MA 01915-6106

Publishers at Scrivener

Martin Scrivener (martin@scrivenerpublishing.com)


Phillip Carmical (pcarmical@scrivenerpublishing.com)

Preface

Engines and pumps are common engineering devices which have become essential to the smooth running of modern society. Many of these are very sophisticated and require infrastructure and high levels of technological competence to ensure their correct operation. For example, some are computer-controlled, others require stable, three-phase electrical supplies, or clean hydrocarbon fuels. This project focuses on the identification, design, and construction of various engines. Noise, vibration and harness performances have also been evaluated with further suggestions given to improve current systems.

Introduction

Diersel engines constitute a major source of power for ships, buses, and trains as well as road machinery. About one-fifth of total energy consumption in the United States goes toward operating these engines, and hence demand for them is growing fast, compared to gasoline engines. Sales of vehicles using diesel engines reached a peak during the 1980s in the United States due to major oil crises, as depicted in Figure 1. Various projections at that time had predicted that an increase of about 20% in sales would be achieved by the end of the decade. However, variations in fuel costs, falling prices of petrol and various problems associated with the operation of diesel engines led to a fall in their overall sales.

Figure 1 Trend in sales of various diesel engine based automobiles in the United States.

Gasoline engines use a spark ignition system for the initiation of fuel reaction, unlike diesel engines, which are based on the compression ignition of fuelair mixture. Diesel engines operate at higher compression ratios, thus allowing more useful work output during the course of their operation. Combustion in these types of engines can be made to take place away from chamber walls, thus helping in reduction of the overall heat release rate. In addition, there are various throttling as well as pumping losses associated with the opertion of petrol engines. These are some of the major reasons for their lesser cycle efficiency when compared with diesel engines. Overall fuel efficiency of a diesel engine may be over 40% higher in the case of medium-sized engines and 50% for larger ones (which are generally used in marine propulsions).

The factors discussed above have hence led to a renewal of interest by various automotive companies in the development of diesel engines. Sales data of diesel engine based automobiles in Europe have indicated that about a quarter of new automobiles were powered using these engines. In France, diesel engines accounted for almost half of total engine sales. Sales of diesel engine based cars in Japan have almost tripled.

This work sheds light on the development of combustion engines with a specific focus on NVH performance of engines. We hope the information provided in the text will be useful for undergraduate and graduate students on various automotive courses.

Contents

Pretace		
Int	troduction	xi
1	Introduction to Combustion Engines 1.1 Historical Background 1.2 Classifications 1.3 Engine Components References	1 1 6 11 23
2	Gasoline Engine Technology 2.1 Introduction 2.2 Background 2.3 Charge Delivery Systems 2.4 Carburetor 2.5 Fuel Injection Systems 2.6 Injection Systems 2.7 Sensors References	27 27 29 32 33 38 40 43
3	Diesel Engine Technology 3.1 Introduction 3.2 Injection Systems References	49 49 57 65
4	Turbocharging 4.1 Introduction 4.2 Background 4.3 Conclusions References	69 70 75

vi Contents

5	Coml	oustion Based Noise	77
	5.1	Introduction	77
	5.2	Background	78
	5.3	Conclusions	80
	Refe	rences	83
6		rchargers	87
		Introduction	87
		Roots Supercharger	90
		Centrifugal Supercharger	91
		Screw Supercharger	92
	Refe	rences	94
7		rials for Engine	95
		Introduction	95
		Structural Properties	96
		Non-Structural Properties	97
		Cast Iron	100
		Aluminum	101
	Refe	rences	101
8		cle Noise and Vibration	103
		Introduction	103
		Vehicle Systems	104
		Transfer Paths	105
	22.0	Features of NVH	106
		Importance of Vehicle NVH	113
	Refe	erences	115
9	Power Train NVH		121
		Introduction	121
		Engine Vibrations	122
		Combustion Noise	130
	9.4	1	134
	9.5	1	
		Pressure and Noise	138
		Motion Based Noise	150
		Piston Slap	152
	9.8		168
	9.9	Oil Pump Noise	172

			CONTENTS	V11
	9.10	Timing Chain and Belt Noise		176
		Transmission Whine		180
		Rattle		185
		Clutch Noise		189
		Flow Noise		196
		Muffler		200
	Refer			203
	IXCICI	ences		203
10	Body	and Chassis System		211
		Introduction		211
	10.2	Vehicle Interior NVH		215
		NVH Damping		226
		ences		237
11	Vehic	le Testing		243
	11.1	Introduction		243
	11.2	Decomposition of Various Sources		244
	11.3	Interior Noise		246
	11.4	Psychoacoustic Analysis		247
		Conclusions		251
	Refer	rences		251
T	ď			255
TII(ndex			255

1

Introduction to Combustion Engines

1.1 Historical Background

Most of the very earliest internal combustion engines of the 17th and 18th centuries can be classified as atmospheric engines. These were large engines with a single piston and cylinder, the cylinder being open on the end. Combustion was initiated in the open cylinder using any of the various fuels which were available. Gunpowder was often used as the fuel. Immediately after combustion, the cylinder would be full of hot exhaust gas at atmospheric pressure. At this time, the cylinder end was closed and the trapped gas was allowed to cool. As the gas cooled, it created a vacuum within the cylinder. This caused a pressure differential across the piston, atmospheric pressure

on one side and a vacuum on the other. As the piston moved because of this pressure differential, it would do work by being connected to an external system, such as raising a weight [1]. Some early steam engines also were atmospheric engines. Instead of combustion, the open cylinder was filled with hot steam. The end was then closed and the steam was allowed to cool and condense [2]. This created the necessary vacuum. In addition to a great amount of experimentation and development in Europe and the United States during the middle and latter half of the 1800s [3], two other technological occurrences during this time stimulated the emergence of the internal combustion engine.

In 1859, the discovery of crude oil in Pennsylvania finally made available the development of reliable fuels which could be used in these newly developed engines. Up to this time, the lack of good, consistent fuels was a major drawback in engine development [4]. Fuels like whale oil, coal gas, mineral oils, coal, and gun powder which were available before this time were less than ideal for engine use and development. It still took many years before products of the petroleum industry evolved from the first crude oil to gasoline, the automobile fuel of the 20th century [5]. However, improved hydrocarbon products began to appear as early as the 1860s and gasoline, lubricating oils, and the internal combustion engine evolved together [6]. The second technological invention that stimulated the development of the internal combustion engine was the pneumatic rubber tire, which was first marketed by John B. Dunlop in 1888 [7]. This invention made the automobile much more practical and desirable and thus generated a large market for propulsion systems, including the internal combustion engine [8]. During the early years of the automobile, the internal combustion engine competed with electricity and steam engines as the basic means of propulsion. Early in the 20th century, electricity and steam faded from the automobile picture electricity because of the limited range it provided, and steam because of the long start-up time needed.

Thus, the 20th century is the period of the internal combustion engine and the automobile powered by the internal combustion engine as shown in Figures 1.1-1.3 [9]. At the end of the century, the internal combustion engine was again being challenged by electricity and other forms of propulsion systems for automobiles and other applications [10].

During the second half of the 19th century, many different styles of internal combustion engines were

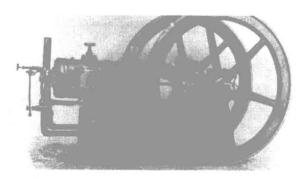


Figure 1.1 Charter engine.

Figure 1.2 Ford engine.

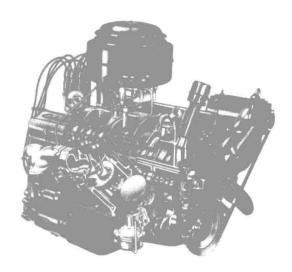


Figure 1.3 Chevrlot engine.

built and tested [11]. These engines operated with variable success and dependability using many different mechanical systems and engine cycles. The first fairly practical engine was invented by J. J. E. Lenoir [12]. During the next decade, several

hundred of these engines were built with power up to about 4.5 kW (6 hp) and mechanical efficiency up to 5%.

In 1867, the Otto-Langen engine, with efficiency improved to about 11%, was first introduced, and several thousand of these were produced during the next decade. This was a type of atmospheric engine with the power stroke propelled by atmospheric pressure acting against a vacuum [13]. During this time, engines operating on the same basic four-stroke cycle as the modern automobile engine began to evolve as the best design. Although many people were working on four-stroke cycle design, Otto was given credit when his prototype engine was built in 1876 [14]. In the 1880s the internal combustion engine first appeared in automobiles [15].

Also in this decade the two-stroke cycle engine became practical and was manufactured in large numbers. By 1892, Rudolf Diesel had perfected his compression ignition engine into basically the same diesel engine known today. This was after years of development work which included the use of solid fuel in his early experimental engines [16].

Early compression ignition engines were noisy, large, slow, single-cylinder engines. They were, however, generally more efficient than spark ignition engines. It was not until the 1920s that multi-cylinder compression ignition engines were made small enough to be used with automobiles and trucks [17].

1.2 Classifications [18]

Internal combustion engines can be classified in a number of different ways:

- 1. Types of Ignition (a) Spark Ignition (SI). An SI engine starts the combustion process in each cycle by use of a spark plug. The spark plug gives a high-voltage electrical discharge between two electrodes which ignites the air-fuel mixture in the combustion chamber surrounding the plug. In early engine development, before the invention of the electric spark plug, many forms of torch holes were used to initiate combustion from an external flame. (b) Compression Ignition (CI). The combustion process in a CI engine starts when the air-fuel mixture self-ignites due to high temperature in the combustion chamber caused by high compression.
- 2. Engine Cycle (a) Four-Stroke Cycle. A fourstroke cycle experiences four piston movements over two engine revolutions for each cycle. (b) Two-Stroke Cycle. A two-stroke cycle has two piston movements over one revolution for each cycle.

Three-stroke cycles and six-stroke cycles were also tried in early engine development [19].