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and instrumentation for the identification and quantification of environmental
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studies to determine the ambient concentrations of pollutants in the environment
and/or the variance of pollutants as a function of time or meteorological factors.
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ABSTRACT

A study of the effects of anthropogenic pollutants and urban-
ization on the thermal structure and pollutant dispersal in the
planetary boundary layer showed that urbanization had a greater
influence on the surface temperature excess between urban and
rural locations than the radiatively active pollutants. The net
effect of gaseous and particulate pollutants was to decrease the
surface temperature around the noon hours and to increase the
temperature during the rest of the diurnal cycle. The increase
in the surface temperature was most significant for winter simu-
lations with snow covered ground. The maximum temperature at the
urban center for a simulation with radiatively active pollutants was
about 1 K warmer than for a corresponding simulation without the
radiatively active pollutants. As a result of warmer surface
temperature, pollutant dispersal near the ground was improved.
The feedback between radiatively active pollutants, temperature
structure and pollutant dispersal was significant and resulted in
z maximum of 25 percent reduction in pollutant concentrations for
the winter simulations.

During wintertime the assumed rates of anthropogenic heat
release in the city were found to play a more important role in
the formation of the urban heat island than the radiatively ac-
tive pollutants. Increase in heat release raised the surface
temperature and caused the surface layer to become less stable
which improved pollutant dispersal. Changes in such interface
parameters as the surface roughness, mcisture availability and
solar albedo were found to have significant effect near-surface
temperatures in the city and on the urban-rural temperature
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differences. The findings indicate that a change in land use is
a very important factor in climate and weather modification by
urbanization and industrialization.

This revort was submitted in fulfillment of Grant Number
R 803514 by the School of Mechanical Engineering, Purdue Univer-
sity, West Lafayette, Indiana, under a partial sponsorship of the
U. S. Environmental Protection Agency. This phase of the work
was completed as of December 1977.
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LIST OF SYMBOLS

ag Absorptance of soil, ag =1-r1g

Cn Concentration of species n

én Volumetric rate of production of species n

Cw,sat Concentration of water vapor at saturated conditions

cp Specific heat at constant pressure

Dn Diffusion coefficient of species n

En Exponential integral function

e, Emittance (emissivity) of the air-soil interface in the
thermal part of the spectrum

F Net radiative flux defined by Eq. (22)

Fr Radiative flux in the positive z-direction

F~ Radiative flux in the negative z-direction

: 3 Coriolis parameter

g Gravitational constant

H Turbulent (sensible) heat flux at theair-soil Lnterfacg
see Eq. (10)

Ahg Latent heat of vaporization of water

I, Intensity of radiation

IbA Planck's function

K, Turbulent eddy diffusivity in the z-direction

k Thermal conductivity

£ Mixing length, see Eq. (20)
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Latent heat flux at the air-soil interface, see Eq.
Halstead's moisture availability parameter, see Eq.
Surface source of pollutant emissions, see Eq. (14)
Refers to radiatively nonparticipating

Pressure

Refers to radiatively participating

Scattering distribution function, see Eq. (17)

Anthropogenic heat emission source at the surface, see

Eq. (10)
Volumetric rate of heat generation

Albedo feflectance) of the air-soil interface in the
solar part of the spectrum

Relative humidity of soil or gas constant
Richardson number

Thermodynamic temperature

Temperature of the soil

Time

Horizontal north velocity component
Horizontal west velocity coaponent
Vertical velocity component

Horizontal coordinate, see Figure 1
Horizontal coordinate

Vertical coordinate, see Fiture 1

Surface roughness

Thermal diffusivity of soil

Potential temperature defined as 6 = T(po/P)R/CP

Absorption coefficient or the ratio of specific heat
at constant pressure to specific heat at constant
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volume

Scattering coefficient or Stefan-Boltzmann constant

species n

pollutants both aerosols and gases

water vapor

the bottom of the soil layer

the edge of the planetary boundary layer
frequency or per unit frequency

aerosol

pollutant gas

top of the free atmosphere

turbuleht eddy diffusivity of momentum
turbulent eddy diffusivity of heat

turbulent eddy diffusivity of mass of species

A Wavelength

H Direction cosine
Y Frequency

P Density

o

¢ Azimuthal angle
Subscripts

n Refers to

) Refers to

w Refers to

A Refers to

S Refers to

\Y Refers to

1 Refers to

2 Refers to

® Refers to
Superscripts

M Refers to
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Gei ﬁefers to
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