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Introduction

In this book, a newly developed Z-fracture criterion is introduced.
Experimental results show that Z-fracture criterion can be successfully
applied in composite structure design. The beauty of the newly developed
criterion is that it can be used precisely predicting the crack propagation
direction in composite materials.

The author also introduced the composite fracture mechanics, the
fracture criteria and their inadequacy, especially the S-criterion.

The introduced Z-criterion is an academic achievement in author’s
research work on the area of composite fracture mechanics. It makes
valuable contributions in the theory of composite fracture.

These achievements make the book a valuable reference book for
university students, professors, engineers and researchers in the related

engineering areas.
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PREFACE

Fiber composites are an emerging class of structural materials
widely used in many critical applications such as national defense and
space technology. The features of the fiber composites that make
them so promising as engineering materials are their low density, high
specific strength, high specific stiffness, and the opportunities to
tailor the material properties through the control of fiber and matrix
combination and fabrication processing.

Cracks in composite are generally subjected to mixed mode
deformations due to the highly complex nature of the material, such
as the variable manufacturing procedure, different notches, and the
varied material mechanical properties. They may also be created
between layers and through layers at the same time and generally
behave as fully developed cracks.

To study the crack problem from the micro-view, quantum
mechanics knowledge will be needed. Between macroscopic and
microscopic knowledge of dislocation movements, formation of
subgrain precipitates slipbands and grain inclusions will be needed.
Due to the highly complex nature of crack propagation and the lack
of a full physical understanding, as well as the lack or sufficiently
powerful mathematical tools, there is no single theory to cope with
the crack problem from the above mentioned points of view. In this
book the macro approach will be applied.

In chapter 1 the basic knowledge of mechanics in composite



materials is introduced. It will be used for introductions of composite
fracture mechanics in chapter 2 and chapter 3.

Regarding fracture criteria, there are many crack initiation
criteria currently available, such as the stress intensity factor criterion,
the maximum circumference stress criterion, COD criterion, J Aintegral
criterion and the S criterion. The S criterion has been demonstrated to
be a good criterion and brought the prospect of studying the crack
problem using a single parameter. However some numerical and
experimental results have indicted that the S criterion is not adequate
when applied to some fiber composites. A successful and more
versatile criterion is essential for the analysis of fiber composites.

Generally speaking, a successful fracture criterion is supported
by many experiments, but under certain special conditions almost any
fracture criterion may be found to be unsatisfactory. In this book a
newly developed Z-criterion for the composite materials has been
fully introduced. Detailed information for the stress fields as well as
the total, dilatational and distortional strain energy density factors for
mixed mode cracks has been fully covered.

In addition, an application of J-integral in Z-criterion for
composite materials is also introduced. In the final chapter we
introduced how to use the Z-criterion to analyze cracked composite
plate under bending conditions. The book can be used as a reference
book for engineers and graduate students who wish to get more
information in advanced fracture mechanics for composite materials.

I would. like to take this opportunity to thank Professors Bor Z
Jang, Bruce Valaire and Jeffrey Suhling for their valuable guidance
during my Ph.D study in Auburn University in U.S.A.. I also thank
Shanxi Province Nature Science Foundation and Taiyuan Heavy
Machinery Institute to support me to publish this book, and my



graduate student Mr. Chen Yonggang for his meticulous care in
typing the manuscript.

Finally, I would like to thank, in particular, my father, Zhang
Jiaji (5K K55 4), my wife Duan Ju (%), who with their love and

care supported the writing of this book.

Zhang Shaoqin (% + 2)
Taiyuan Heavy Machinery Institute
May 15, 2000
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1
Mechanics of
Composite Materials

1.1 Stress-Strain Relations

From the macro-point of view fiber reinforced composites can be
treated as uniform materials with anisotropic mechanical properties. In this
book we only study such materials with linear elastic property. For
anisotropic materials the stress and strain is related as follows!':

o, =Cie; (,j=12,..6) (1.1)
where o, is stress component,

& ; is strain component,

C; is stiffness matrix component.
It can be proved that stiffness matrix C is a symmetric matrix
C,;=C; (1.2)
So C has 21 independent components for anisotropic materials. Each

component is a material constant.

For orthotropic materials
There are three mutually perpendicular elastic symmetric planes
in the material. It can also be proved that C only has 9 independent
components. In this case we have
Ciy=Cis=Cg=Cy=Cy=Cp=Cy =C35=C34=Cy5s =Cy = C56 =0

(1.3)
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Then equation (1.1) can be written as

o C, C, C; 0 0 0 |g
0, Cp C G 0 0 0|4
o3| _ Ci Cp C3 0 0 0 | & (1.4)
Ty 0 0 0 Cyu 0 0 |y
31 0 0 0 0 GCs 0]y
) L0 0 0 0 0 Cylr

For isotropic materials
C; has only two independent components. Then equation (1.1)

can be written as

¢, C, C, 0 0 0
o, c, ¢, C, 0 0 0 &
o |c, C, C, 0 0 0 &
TlZlo 0 0 C“;C'Z 0 o |&a| 9
Ty Vs
C, -C

T3 0 0 0 0 —— 0 V3
) 1o 0 0 0 0 ————C“;C'Z Ye
Compliance matrix
Equation (1.1) can be written as

&,=B,0, (i,j=12,..6) (1.6)

where B; is called compliance matrix components, and
B=C" (1.7)
B is called compliance matrix,
C is called stiffness matrix .

For anisotropic materials
Similarly matrix B is a symmetric matrix, and has 21
independent components,
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For orthotropic materials
Compliance matrix B has 9 independent components. Strain-
stress relations are as follows

&) [By B, By 0 0 010
& B, By By 0 0o,
& By By B; 0 0 0o (1.8)
V2 0 0 0 B, 0 07y,
V3 0 0 0 0 B 0|75
) | 0 0 0 0 0 By 72

For isotropic materials
Compliance matrix B has 2 independent components. Strain-
stress relations are as follows

(B, B, B, 0 0 0
& B, B, B, 0 0 0 Oy
& B, B, B, 0 0 0 o
Sl_lo 0 o0 B, -8By 0 0 91 (1.9)

) Yo 0 0 0 0

1.2 Elastic Constants for Orthotropic Composite
Materials

It is convenient using elastic constants (Young’s modulus,
Poisson’s ratio and shear modulus) to express the compliance matrix
B as follows:
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[ _l_ vy — Vi 0 0 0 1
E, E, E,
-v, 1 -y, 0 0 0
E, E, E,
Vs TVn 1
— 0 0 0 1
B E, E, E, (1.10)
0 0 0 R 0 0
Gy
0 0 0 0 —C—;l— 0
3t
0 0 0 0 0 EI_—J
L 12

where E, (i =1,2,3 ) is Young’s modulus in the i th elastic principal
direction in the orthotropic materials (under the condition of o, 70,0, =0,

E .
i#]). v, is Poisson’s ratio and it is defined as v, =-—= (under
condition of o, #0 , other stresses are zero ). G; (i,/j=1,2,3) is
the shear modulus in the i - j plane.

Considering the symmetric property of B from equation (1.10)
we have the reciprocal law for orthotropic materials:

Vi Gj=123) (1.11)
Ei EJ ’J 2~y .
Noting
CB=1I (1.12)
The stiffness matrix C is easily derived from (1.10) as
y
vy _1-vyy, C.. = 1-vpvy)
11 = ’ 2~ . ? 33
E,EA E,E,A EE,A
C,= Vio ¥ VisVas _ Vo T ViV L
E,E,A E,E,A
Vi, +V,,V Vi + Vi,V
C,=-l2n Y TV" _c

EE,A E,E,A
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C.. = Vs T VaVis Vo +Va)Vip C
= = =Cg
2 EE,A EE;A

Cu =Gy, C5=Gy,C% =Gy,

1 oovy owy
El E2 E3
A= ~Vi _1__ — Vi (113)
El EZ E3
Vi3 V1
E, E, E

1.3 Limitation of Elastic Constants

For orthotropic materials

We know that it is always positive definite for the strain energy
density function. Then the stiffness matrix C and the compliance
matrix B are both positives definite. So we have

A 1-viaVo) = Va3V = Vais = 2Vy ViV

>0 (1.14)
E1E2E3
E; >0,E,>0,E,>0 (1.15)
1=V, >0, 1-vyv >0, 1-vv, >0 (1.16)
1 1
E, )? E )2
Vo< ==1 , |v,|l<i—
<[], pl<[ £
1 1
E, )2 E, )2
V| <| =1, Wni<|l—==
pal<( 2]+ bl <[ 2
1 1
IR E, )2
Vil <l — | , (yl<|—= 1.17
vl (E bal<| 2 (1.17)

By using equation (1.11) and (1.17), the following equation can
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be derived:

(. ,E L E ,E) I
VoWaVia < —| 1—y2 =L —y2 22 )2 73 | o — 1.18
21V2V13 2[ 21 E, 2, 13 E)2 (1.18)

It tells us that the product of three Poisson’s ratio is less than 0.5.

For isotropic materials
Similarly it can be proved that the Poisson’s Ratio v may take

the value within the following range

1
-1 - 1.19
<v<2 (1.19)

1.4 Stress and Strain Relations of Orthotropic
Composite Plate

Coordinate axis parallels to elastic principal direction
As shown in figure 1.1 the coordinate axis is parallel to material
elastic principal direction.

Figure 1.1  Coordinate system in orthotropic plate

The stress and strain relations for plane-stress state are as

follows
O3=Ty=753=0 T (1.20)
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1 -y 0
&) (Bu B, 0o E, Ek o,
& |=|By, By 0 |o,|= ZEV—& = 0| 2Dy
Y12 0 0 By\m : ’ 1 \%2
0 0o —
Gy,
Vi3 Vs
& =-——20—-——=0 1.22
=g R (122
Y=Y =0 (1.23)
From the equation (1.21) the in-plane stress strain relations are
derived as:
o, O G 0 s &
o, |=|CQn n 0 |& (=0 ¢ (1.24)

T2 0 0 Ok A\ Y12

where Q is in-plane stiffness matrix for orthotropic composite plate.
Actually Q is part of material stiffness matrix C. The
components of Q are as follows:

E
Oy =r—"—
~V12Va
0, = viEy, _ _VakE
1-vpvy  1-vpyy
E
On= —1 2
~—Vi2Va
Oss = Gz (1.25)

Coordinate axis is inclined to elastic principal direction
As shown in figure 1.2 the coordinate axis is inclined to material
elastic principal direction.



