C*-ALGEBRAS

AND THEIR

- AUTOMORPHISM
GROUPS

GERT K. PEDERSEN



C*-ALGEBRAS

AND THEIR

AUTOMORPHISM
uROUPS

- GerT K. PEDERSEN

" Mathematics Institute
University of Copenhagen
Copenhagen, Denmark _

- ACADEMIC PRESS
'LONDON . NEW ‘'YORK SAN FrRANCISCO
A Subsidiary of Har outBacJ ovanapich, Publisher ers



ACADEMIC PR_ESS INC. (LONDON) LTD.
24/28 Oval Road
London NW1

United States Edition published by
ACADEMIC PRESS INC.
111 Fifth Avenue
New York, New York 10003

Copyright © 1979 by
ACADEMIC PRESS INC. (LONDON) LTD.

All Rights Reserved

No part of this book may be reproduced in any form by photostat microfilm, or.any other
means, without wnttcn permission from the publishers

British Library Cataloguing in Publication Data

Pedersen, Gert K
C*-algebras and their automorphism groups.—(London Mathematical Society. Monographs;
14 ISSN 0076-0560).
1. C*-algebras

. L Title II. Series
512'.55 QA326 : .
ISBN 0-12-549450-5 LCCCN 78-18028

PRINTED IN GREAT BRITAIN BY
PAGE BROS (NORWICH) LTD, MILE CROSS' LANE, NORWICH



Preface

_The theory of C"‘-algebras is the study of operators on Hilbert space with
dlgebralc methods. The motivating example is the spectral theorem for a
normal operator (which, in effect, is nothing but Gelfand transformation
applied to the algebra generated by the operator). The applications of the
theory range from group representations to model quantum field theory and
quantum statistical mechanics.

Already the C*-algebra theory has grown to a size where any compre-
hensive treatment would result in a series of volumes more suited as a source
of references than as a textbook. The material presented here has been
limited by the author’s knowledge and prejudice to form a somewhat
manageable version. Thus ‘the aspects of the theory concerning partially
ordered vector spaces are treated in great detail. Also, since G*-algebra
theory has benefited .tremendously from impulses from mathematical
physics, it seemed proper to give an account which would please the C*-
"physicists. Therefore the problems connected with groups of automorphisms
have received special attention in this treatise. In the converse direction, the
theory of von Neumann algebras, often so dominantly exposed, has here
been reduced to its proper place as ancilla C*-algebrae.

At the end of each section a few remarks are inserted, with references to
~ the bibliography. The intention is to give the reader a rough idea of the
development of the subject. Such personal comments are bound to contain
errors, and the author humbly asks’ forgiveness from the mathematicians
who have undeservedly not been mentioned. '

Many people were important for the completion of this book: Richard
Kadison whose work has been a constant source of inspiration for me;
Daniel Kastler who provided shelter and a two months raincurtain ‘when
the work was begun in 1974; colleagues who shouldered my teaching Yoad
while I was writing; and students at the University of Copenhagen who
were exposed to the first wildly incorrect drafts. Itis a plcasure to record m¥
thanks to all of them. - . -

Copenhagen ' Gert Kjergard i’g:dersen
August 1978
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Chapter 1

Abstract C*-algebras:

1.1 Spectral theory

1.1.1. A C*-algebra is a complex Banach algebra A with an involution, *,
satisfying [|x*x|| = ||x|* for all x in A. Since ||x*x| < ||x*||lx] we have
fixll <llx*| for each x in 4, whence #x|| = [|x*|, so that the involution is
isometric. An element x in A4 is normal if it commutes with its adjoint x*; and it
is self-adjoint if x = x*. The self-adjoint part of a subset B of 4 is denoted by
B,,. For each x in A the elements 3(x + x*) and —4i(x — x*) (the real resp.
imaginary part of x) belong to A,,. It follows that A4, is a closed real subspace
of A and that each element x in 4 has a unique decomposition x = y + iz with
yand zin A,. '

1.1.2. In general a C*-algebra need not have a unit. If however, the C*-algebta
A has a unit (denoted by 14, or just 1 when no‘confusion may anse) and A4 # 0,
then 15=14and |1, =1

If 1€ A wesaythatan element uin Ais unitaryif u*u = uu* = 1. Note that
each unitary is normal and has norm 1.

1.1.3. PROPOSITION. For each C*-algebra A there is a C‘-algebra A with unit
contaznmg A as a closed ideal If A has no unit then A/A = C.

Proof. Let m denote the left regular representation of A as operators on itself,
ie. m(x)y = xy forall xand yin A4. Itisclear thatnisa homomorphlsm and
that ||7r(x)|| < ||x||. But ‘since

Ixl? = llxx* = llr(x)x*]l < (el lx* |

we see that z is an isometry. Let 1 denote the identity operator on 4 and let A
be the algebra of operators on 4 of the form m(x) + ol with xin Aandain C.
Since n(A4) is complete and A/n(A)=C, A4 is also complete. With the
involution defined by (n(x) +al)* = n(x*).+ a1, A becomes a C*-algebra

1



2 ABSTRACT C*-ALGEBRAS § = 4 11

since for #ach & > 0 thereis a y in A with ||y|| = 1 such that

lr(x) #+ alll? <&+ l(x + oyl
=&t PO+ @) x + al S e+ Ix* + @) x + @)l
' <&+ [[(n(x) + ad)*(n(x) + ab)].

1.14. For each x in a C*-algebra 4 we define the spectrum of x in A (writtén
Sp.(x)) as the set of complex numbers 4 such that 41 — x is notinvertitle in A.
Note that 0 Sp,(x) whenever 4 # A. By straightforward computations it
follows that if 4 # 0, then Z¢Sp,(x) if and only if there is a y in A4 such that
xy; yx=i"'x 42y (corresponding to the fact that ™" — y = (i1 — x)~*
in A).

If xeA and v(x) is the spcctral radius of x then by repeated use of the
equality ||x2|| = |x||> we obtain '

v(x) = Lim|]x*"* ™" = |Ix||
If x is just normal, _thén from the preceding,
Wx)? <l = flx* x| = Lim ey
| < Lim(ey I = v,
whence again w(x) = |Ix|..
1.1.5. LEMMA. If xe A, then Sp(x) c R. If 1€ A and u js unitary, Sp(u) is
contained in the unit circle.

Proof . 1f 1eSp(u) then A~ 'eSp(u~?). Since u~! = u* wehave |4 <1 and
|27 <1, whence |i| = 1 which proves the second assertion in the lemma.

Take now x in A,. The power series Z(n!)~'(ix)" converges in A to an
element exp(ix) which is unitary (in A) since

exp(ix)* = exp(—ix) = exp(ix) .

If 1eSp(x) then exp(il)e Sp(exp(ix)) by computation, whence |exp(id)| = 1
by the first part of the proof. It follows that Sp(x) = R as desired.

1.1.6. Let A be acommutative Banach algebra. The spectrum A of A is the set of
non-zero homomorphisms of 4 onto C. Each element in 4 belongs to the unit

- ball of the dual A* of 4, and since A U {0} is the weak™ closed subset of A*
consisting of functionals t such that t(xy) = t(x)t(y) for all x,y in A4, we see
that A is a locally compact Hausdorff space in the weak* topology. The
Gelfand transform.on A is the homomorphism x — X of 4 into Co(A) given by
%(t) = t(x) for all xin A and ¢ in A.
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1.1.7. THEOREM. If A is a commutative C*-algebra then the Gelfand transform is
a *-preserving -isometry of A onto Cy(A).

Proof . If te A and xe A then ker t is a maximal ideal of A, whence t(x) € Sp(x)
(and conversely, if .eSp(x)\{0} then i = t(x) for some ¢ in A). If therefore
x 2 x* then t(x)eR by 1.1.5. It follows that {(x*) = t(x) for each x in A
which shows that the map x — X is *-preserving (using complex conjugation
of functions as involution in Cy(A4)). Moreover, ||X|| is the spectral radius of x,
whence ||X||-=|lx|| by 1.1.4 as each x in A is normal. Thus x->X is a
*_preserving isometry of 4 into C,(A) and since the set of functions {¥|xe A}
separates points in A and does not all vanish at any point we conclude from the
Stone-Weierstrass theorem that the image of A is all of Cy(A).

1.1.8. PROPOSITION. Let x be a normal element of a C*-algebra A, and let B
denote the smallest C*-subalgebra of A containing x. Then B = Cy(Sp 4(x)\{0})

and Sp(9\{0} = Sps(x)\{0}.

Proof Since B is a smgly generated commutative C*-algebra it follows that
B = Spy(x)\{0}, whence B = Co(Sps(x)\{0}) by 1.1.7 (suppressing the
- isomorphism). If therefore /e Spy(x)\{0} thereisforeach ¢ > 0 anelementb
in B with |b]|=1 suqh that - ||ib — xb|| <e. This shows that
~1 — x isnot invertible in A, thus e Sp ,(x). Itisimmediate from 1.1.4 that if
/¢ Spg(x) and 4 #0 then /’.¢S~p4,(x‘), and the proposition follows.

1.1.9.1f x is a normal element of A and fe Cy(Sp(x)\{0}) we denote by f(x) the
element of A4 corresponding to f via the embedding of Co(Sp(x)\{0}) into A4-
given by 1.1.8.

If fis a continuous function on C vanishing at 0 then it can be approxnmated
uniformly by polynomials cn any given compact set. It follows that if {x, }isa
sequence of normal elements converging to x, then {f(x,)} converges to f(x).

1.1.10. Let x be a self-adjoint element of A. By 1.1.5 Sp(x) < R. We write
x4 for fi(x), where fi(t) =t v 0; x_ for f5(x), where f5(t) = —(t A 0) and |x|
for fy(x), where f3(t)=1|t. Then x=x, —x_, |x=x, +x_ and
x,+x_ = 0. We say that x, and x_ are the positive and negative part of x and
that |x| is the absolute value of x. If Sp(x) = R, we write x'/2 for f,(t), where
~ fa(t) = t'/2 Tt will be shown in 1.3.3 that Sp(x*x) < R, for any x in 4. We
will then define |x| = (x*x)? to be the absolute value of x.

1.1.11.1f xe A, and ||x]| <1 then u=x +i(l — 2)"2 is a normal element
with u* = x — i(1 — x»)'2, Sin¢e w*u =1, u is unitary. But x = 3(u + u*)
which shows that each element,in A can be written as a linear combination of
(four) unitary elements.

An elementary calculation shows that if x and y are invertible in 4 and
x*x = y*y then the element xy~ ! is unitary. This is used in the proof of 1.1.12.
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1.1.12. PROPOSITION IfAisa C"‘-algebra with unit then the umt ballin A is'the
closed convex hull of the unitary elements in A.

Proof . If xe A and |x| <1 the spectrum of I = xx* is strictly positive so
that the element

fx,7) = (l’—— xx*)" V(] + Ax)
exists in A4 and is invertible for each 7 in C with |4] = 1. Using the power
series expansmn (1 —xx*)"!'=Z(xx*)" we see that x*1l—=xx*)"!=
(1 — x*x)™ 'x* whence :
SO A* f(x, 2) + 1 =(1 + Ix*)(1 — xx"')"(l +Ax)+ 1
=(1-xx*)"1+(1 - x"x)"‘Ix“ +(l — xx*)"1ix
+ (1 — x*x)~ 1,

This expression is unchaﬁged when exchanging x by x* and 4 by 4 and we-
conclude that

S0 A (x,2) = f(x*, 2% (x*, 7).
It follows that for each 4 in C with Al =1 t.h'e element u, = f(x, A)f(x* 1)~ !
is unitary (cf. 1.1.11).
The function - L
u(2) = (1 = xx*)"12(4 + x)(1 + Ax*)~ (1 — xx)\2

is holomorphic in a neighbourhood of the: closed unit dlsc and u(A) = Auy
when |4| = 1. Moreover, |

u(0) = (1 — xx*)~ l/2x(1 x*x)M? = (1 xx*)” Y31 = xx*)'2x = x.

It follows from Cauchy’s integral formula (A4, Appendix) that
) 2z
x=(2m)"! z! u(e)dt.

Since the measure (27)”'dt on [0,27] can be approximated by convex
combinations of point measures, and since the elements u(e) are unitary in A,
the open unit ball of 4 is contained in the closed convex hull of the unitary
elements in A4, from which the proposition follows.

1.1.13.1f A is a C*-algebra with unit then 1 is an extreme point in the unit ball.
“of A.Forif 1 = j(x + y) with x and y in A, then x commutes with y and by
" spectral theory x=y=1 In the general case we have
1 =33(x + x*) + 3(y + y*)] whence 4(x +x*)=%4y+y*)=1. Thus x
-and y are normal elements and again x = y = 1 from spectral theory.
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Since multiplication by a unitary element is a linear isometry of A it follows
from the above that every unitary in A is an extreme point in the unit ball of A.
From 1.1.12 we see that the unit ball of a C*-algebra with unit is the closed
convex hull of its extreme points. This is remarkable since the unit ball is not in
general compact either in the norm topology or.in any other vector space
topology on A. ‘

1.1.14. Notes and remarks. The axioms for an abstract C*-algebra were
formulated in 1943 by Gelfand and Naimark [92]. With the aid of an extra
axiom (namely that the specfrum of x*x is positive for every x) they showed
that any C*-algebra is isomorphic to an algebra of operators on a Hilbert
space. The theory of operator algebras had been developed during the thirties
'by Murray and von Neumann in a $eries of papers [175, 169, 170, 176, 171],
dealing mainly- with the weakly closed algebras (= von Neumann algebras).
The name C*-algebra was coined by Segal in [235] where the foundations for
representation theory were laid. Presumably the C is meant to indicate that a
C*-algebra is a non-commutative analogue of C(T), whereas the * recalls the
importance of the involution. ‘

The result in 1.1.11 is an early discovery; that in 1.1.12 is more recent [189].

1.2. Examples‘

1.2.1. As mentioned in 1.1.5 there is a bijective correspondence between
commutative C*-algebras and locally compact Hausdorff spaces. Non-
commutative examples of C*-algebras arise by considering the set B(H) of
bounded linear operators on a (complex) Hilbert space H. With the operator
sum, product and norm and with the adjoint operation as involution, B(H)
becomes a C*-algebra which is non-commutative when dim(H) > 1. We shall
study B(H) and its subalgebras-in some detail in the next chapter. When
dim(H) =n < oo we may identify B(H) with the algebra M,, of (complex)n x n
matrices.

1.2.2. Given two C*-algebras A and B there are in general several ways of
.completing the algebraic tensor, product A ® B (which is an algebra with
involution in a natural way) to obtain a C*-algebra. We shall content ourselves
here with the case where one of .the factors is commutatlve so that this
unpleasantness does not occur.

Let T be a locally compact Hausdorff spaee and A a C*-algebra. By C¥(T, A)
we understand the set of bounded continuous functions x from T to A and by
Co(T, A) the subset of functions x vanishing at infinity, i.e. the function
t — ||x(t)|| belongs to Cy(T). With pointwise sum, praduct and involution, and
with ||x|| = sup ||x(t)] for each x in Co(T, A) we obtain a C*-algebra such that
Co(T)® A form a dense subset.
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- 1.2.3. The simplest example of a non-commutative, infinite-dimensional C*-
algebra is probably Co(N,M,). If one prefers an algebra with unit then
C(Nu {x},M,) is a good example. This last algebra also has some C*-
subalgebras which are useful when -trying to find counter-examples. For
instance the set of sequences in C(N u{x }, M,) which tend to a diagonal
matrix; the set of sequences which tend to a multiple of the identity matrix
(nothing but Cy(N, M,)™ as defined in 1.1.3); or the set of sequences x such that
(x(x));; = O unless i=; =1.

1.24. Let {A;|iel} be afamily of C*-algebras. The set of functions x from I

into U A; such that x;€ 4; for each iin I and such that the function i — ||x;| is

bounded, is a C*-algebra with pointwise sum, product and involution. We
“shall denote this C*-algebra by I1 4; and call it the direct product of the A;’s.

Considering instead the elements in IT 4; such that ||x;| = 0 as i > > (with I

as a discrete space) we Obtain the direct sum of the A;’s, which we denote by
@ A;. When I is a finite set we may of course write A4, D A,.. @ A, instead of

@ A4; (=1 Ai):

If A;=A foralliin I then

MA=C,4)  and @A = Col, 4.

1.2.5. The most important non-commutative infinite-dimensional C*-algebra
is the C*-subalgebra C(H) of B(H) consisting of the compact operators on H.
Since C(H) is a minimal closed ideal of B(H), being the closure of the finite-
" dimensional operators, C(H) is simple, i.e. contains no non-zero closed ideals.
This means that C(H) cannot be dccomposed into smaller algebras, which
explains its role as building block in more complicated C*-algebras. Note that
1¢C(H) if dimH = oo and that C(H) is separable if H is separable.

1.2.6. Notes and remarks. The general theory of tensor products of C*-algebras
can be found in Sakai’s book [231]. We return in Chapter 6 to tensor products
of matrix algebras as a means to generate new algebras by an inductive limit -
procedure (infinite tensor products). See also 8.15.15.

1.3. Positive elements and order

1.3.1. LEMMA. The following four conditions on an element x in A are equfvalent: '
(i) x is normal and Sp(x) < R ;
(i) x = y? withyin A;
(i) x = x* and ||t1 — x| <t for any t > ||x|;
(iv) x = x* and ||t1 — x| <t for some t > ||x||
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Proof. (i) = (i1). Using 1.1.8 we set y=x"2 and have y?=x. (ii)=(i).
Embedding x and y in a commutative C*-subalgebra we see that_x = x* and
Sp(x) < R.. (i) = (iii). From 1.1.6 we have |z|| = sup {14l] 4 eSp(z)1 for each
normal element z of 4. Applying this to t1— x with ¢ > x| we have

ltl — x|| = sup{|t — Z]| A€ Sp(x)} <t
(iii) = (iv) is ifnmediate. (iv)=(i). If ZeSp(x) then t — i€ Sp(tl. — x), whence
It — Al <el — x| <t
Therefore 2> 0 since 4 <t.

1.3.2. The elements x of a C*-algebra A satisfying the conditions in 1.3.1 are
called positive (m symbols x> 0), and the positive part of a subset B of A is
denoted by B, . :

1.3.3. THEOREM. The set A . is a closed real cone in A,a, and xe A, if and only
if x=y*y for someyin A:

Proof. From 1.3.1 (iti) it is cleal.' that A, is a closed subset of A,, stable under
- multiplication with positive scalars. To prove that 4, isa cone take x and y in
A, . By 1.3.1 (iii) we have ;

Il + My = (x + pll = AldIxIT — x) + (it = )l
Sl = i + iy = il < Ixdl + iy,

whence x + ye A, by 1.3.1 (iv) since |Ix]| + Iyl =[x + . _
Assume now that x = y*y. Then x = x* sothat x=x, — x_ by 1.1.8.
Moreover

(x4 (pxtY)= x'2p*px? = ¥ (x, —x_ )XY = —x2e—A,.
Put yx"? =a + ib with.a and b in A_,. Thén
(x¥2)(yxl2)* = Aa? + b2) — (yx12)*(yx12)e 4,
since A, was a cone. But, zero apart the spectrum of a product does not
depend on the order of the factors (A1, Appendix), whence
' ‘ Sp(x2)c R, n—-R, =0,
so that x_ =0 and x> 0.

.1.34.Since A, — A, = A, and A, n(—A,) =0, A, becomes a partially
ordered real vector space by defining x < y whenever y — xe 4,. When Ais
non-commutative A, is not a vector lattice.

1.3.5. PROPOSITION. If 0 < x <y then a*xa <a*ya for each a in A -and
{Ixl < Iyl ' ' :
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Proof . Since y — x = b*b from’ 1.3.3 we have a*ya — a*xa = (ba)*(ba)ec A, .
Adjoining a unit to A we have y <|ly|1 from spectral theory. Then.
x < |yl 1, whence |[x|| < [|yll

1.3.6. PROPOSITION. If le A and x and y are invertible elements in A with
x <y then y' <x”

- Proof. From 1:3.5 we have y~'2xy~'2 <1, whence IIx”Zy—mH <1 and
thus |[x"?y~'x¥?| <1 which implies that x'?y~!'xY2 1. By 1.3.5
y—l<x—l21x—l/2=x~l.

-

1.3.7. We say that a continuous real function f on an interval in R is operator
monotone (increasing) if x <y implies f(x) < f(y) whenever the spectra of x
and y belong to the interval of definition for f. :

For each a > 0 define f, on ]—1/a, oc[ by

£ =(1+a) 't =[1 = (1 + o

Since the process of taking inverses is operator monotone decreasing by 1.3.6,
it is easy to see that f, is operator monotoue increasing on ]— 1/a, co[. The
family of functions {f,} will be used repeatedly in the sequel. Note that
f,(t) < Min{t, 1/} and that Limf,(t) = t uniformly on compact subsets of R
when 2—0. Moreover, f,=f; when a<f -and f,ofy=f,4s on
]—(+p) "', x[. Finally, if > 0° then Lim af,(t) = 1 uniformly on
compact subsets of ]0, < [ when «— <. ‘

1.3.8. PROPOSITION. If 0 <8< 1 the_functiwr i — t* i$ operator monotone on
R..

Proof. If 0 € x S_l: then f,(x) éfa(y) with f, as in 1.3.7. Now

]Efa(t)a"”dat = 1j(l + at);‘ta”’da
0 0 ’

= [l +a) e ?h "da=t*[(1 + 0) 'a P da = ;¢
0 0

with - vinR,.Forallt in [0, |lyli] and & > O there is therefore a large nand an
equldlstant division 0 = ao <ay; <---<a,=n of the interval [0,n] such -
that :

m
It —(m)~'n Y f(Da | < e
k=1

It follows that ¥ — x# > —2¢, and since ¢ is arbitrary Py

1.3.9. PROPOSITION. If 0 < x <y implies x* < y” for some > 1 andallx,y
in a C*-algebra A, then A is commutative.
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Proof . By iteration we see that if the exponent f; preserves order then so does 3"
for every min N. Using 1.3.8 we see that the exponents which preserve order
form a segment of R, . It suffices therefore to prove the proposition with’
B=2 ' '

Take x,yin 4, and ¢ >0. Then x < x + &y 'whe_nce"
x? < (x + &y)? = x2 + &xy + yx) + £%?
This gives 0 < xy + yx + ¢y* for any & > 0, thus

(* Coxy+yx >

Set xy=a+ 1b ‘with a and b in A.,. Clearly a > 0. But (x) is valid for any
product of positive elements and

(%) . x(yxy) = a* = b* + i(ab + ba)

from which wé conclude that- at-bm =0

The set of numbers a > 1 such that ozb2 <a’? forallxand yin 4, w;th‘
xy =a+ ib is therefore hon-empty. The set E is also closed, so if it was
bounded it would have a largest element, say /. Thusif x, y belongs to A, and
xy=a+ib then a® — b > 0 and therefore by (%)

(x2x) 0 < b*a® — 1b%) + (a® Abz)b2 b2a? + ab* — 2ib%,

From (**) we now have _

Aab + ba)* < (a® — b?)?,

that is - i = g

Alab%a + ba’b + a(bab) + (bab)a] < a* + b* — a*b® — b2a?.

On the left-hand side we have a(bab) + (bab)a = 0 by (x)and ba®b > /b* by

assumption and finally, ab*a > 0. Using this, and inserting (+**) on the right-

hand side we get ik :

: A2b* <a* + (1 — 27)b*,

that is _
(4% + 24 = 1)p* < a*

By 1.3.8 this implies that (A% + 24 — 1)V2b* <a? for all a and b with

a+ib=xy and x,y in A, . But then (i*> + 24 — 1)"?€E in contradiction

with our choice of 4 as the largest element. It follows that E is unbounded,
.whence ab® <q® forall a > 1, ie. b=0, and 4 is commutative.

"1.3.10. We say ; .haf a continuous real function £ on an interval in R is operator
convex if for any two operators x, Y with spectrum in this interval and any / in
[0, 1] :

f("-x + (1= Ay) S H () + (1 = DY),
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We say that f is operator concave if —f is operator convex.

1.3.11. PROPOSITION. The functions f,, a >0, the functions t.—t*,.

0 < B <1, and the functions t — log(e + t), ¢ > 0, are all operator concave on
R..

Proof. If a is a positive invertible operator then from spectral theory we have
for each 4 in [0, 1]

A+ —=Ada] ' <i+(1 —/'.)a".v

If xand y are positive invertible operators put a = x~!/2yx~1/2, Multiplying'
the inequality above with x~ /2 from both sides, we get by 1.3.5

L xd (= Ayt € Ax T (L =AY,

which shows that the function ¢t — ¢t~ ! is operator convex on ]0, co[. It follows
immediately from the formula in 1.3.7 that the functions f,, a >0, are
operator concave on R .

Since operator concavity like operator monotonicity is preserved under
limits (uniformly on compact subsets) and under convex combinations we see
exactly as in the proof of 1.3.8 that the functions t >, 0 < <1, are
operator concave. Finally, for each ¢ >0 put :

g,(t)=(g+1)“(a+t+s)“(t+a—1)=(a+1)“—(a+t+e)“.

The last expression shows that g, is operator concave for a > 0. The first
expression shows that for each ¢t > 0 the function « — g,(t) is integrable. An
elementary calculation yields

oj‘ g,(t)da = log(e 4o t)
0

and consequently the functions t—loge+t), &€>0 are operator
concave. Incidentally, the argument also shows that the functions are operator
monotone. ‘

. 1.3.12. Notes and remarks. The result in 1.3.3, due to Kelley and Vaught [148],

shows that the extra axiom. (x*x > 0) in the original definition of a C*-

algebra (see 1.1.14) was redundant, as Gelfand and Naimark also suspected.

Operator monotone functions were characterized by Lowner [163] as being

those continuous functions f:I — R which admit a holomorphic extension f
o the upper half plane €, = {Imz > 0} such that f(C.) < C, . It follows.
by a slight variation of Herglotz’s formula that each function f which is
operator monotone on R, has a unique representation f(t) = [§ f.(t)du(a)
for some positive measure u on R, . The result in 1.3.9 is found in [179].

Operator convexity and monotonicity is treated in [16].



