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Preface

The application of quantum chromodynamics (QCD) in practice implies computation
of various hadronic and vacuum gauge-invariant path-dependent matrix elements
that often contain complicated systems of Wilson lines and loops. The latter may in-
clude light-like segments, (semi-)infinite parts, simple obstructions such as cusps,
that is the points where the path itself is continuous, while the derivative is not,
and self-intersections, which make a path nonplanar. The purpose of this book is
to give a systematic pedagogical introduction into the quantum field theory ap-
proach to quantitative analysis of Wilson path-ordered exponentials in QCD and its
applications of this formalism to the study of gauge-invariant quark and gluon cor-
relation functions, which can be associated with the three-dimensional transverse
momentum-dependent parton density functions, commonly known nowadays as TMD
pdfs or simply TMDs.

The strong interest in TMD pdfs is due, in the first place, to the rapid theor-
etical and experimental development and impressive recent results achieved in the
study of the three-dimensional structure of the nucleon, which suggests that not only
the longitudinal fraction of the struck parton momenta, normally associated with
the Bjorken-x variable, but also the two transversal components k, = (k, k) are
taken into account. A new era in the investigation of the quark and gluon contents
of nucleons has been launched in the research programmes dealing with high-energy
semi-inclusive reactions with polarized and unpolarized hadrons, where the trans-
verse motion and the spin-orbit correlations of the partons are directly accessible.
Understanding the partonic structure of nucleons beyond the collinear approximation
calls for an appropriate development of the theory. In classical inclusive processes,
such as deep-inelastic ep-scattering (DIS) or electron—positron annihilation to had-
rons, where no more than one hadron is identified in the initial state, the so-called
collinear QCD factorization approach is applicable. The latter suggests that the lon-
gitudinal (parallel to a large light-like momentum in a suitable system) momenta of
the patrons are intrinsic (non-perturbative), while their transverse momenta can be
created by perturbative radiation effects (parton showers). In less inclusive processes,
such as the Drell-Yan lepton pair production, semi-inclusive DIS, hadron-hadron an-
nihilation to jets, Higgs and heavy-flavor production, where two or more hadrons in
the initial or final state are detected, one is tempted to go beyond the collinear ap-
proximation. The reason is that now the momenta of the particles participating and
detected in the process entail a nonplanar kinematical setting, which makes it nat-
ural to keep not only the collinear but also the transverse components of the parton
momenta unintegrated. The so-called transverse momentum dependent factorization
framework is believed to be a promising tool in these situations. It is expected to
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provide a unifying QCD-based framework with both mechanisms of the transverse mo-

mentum creation taken into account, that is intrinsic (essentially non-perturbative) as

well as the perturbative radiation in parton showers.

From the phenomenological prospective, observation of large single-spin asym-
metries in experiments with polarized hadrons certainly demands the development
of relevant theoretical tools that must include the non-perturbative intrinsic trans-
verse momenta of the partons. The use of TMD parton densities as non-perturbative
input provides such a framework because they contain explicit correlations between
partonic transverse momenta and the orbital momenta and spins of the nucleons.
Moreover, the TMD factorization approach is considered to be a promising tool for the
QCD study of some unpolarized high-energy processes in the specific regimes. Namely,
the Drell-Yan vector boson production for low-gr and the high-energy hadronic colli-
sions with fixed momentum transfer at small Bjorken-x, where the gluon longitudinal
momentum fractions become small, while the transverse momentum components
dominate, give us examples of the TMD-related regimes accessible at the Large Had-
ron Collider (LHC). The TMD approach is also applicable to unpolarized processes with
sensitivity to polarized gluon distributions as well as the Higgs, jet and heavy flavor
production processes at the LHC,

Among other currently operating and planned facilities with the most promising
TMD-related experimental programmes we name the following ones:

— Relativistic Heavy Ion Collider (RHIC in Brookhaven National Laboratory) hosts
various reactions with polarized protons and nuclei.

— One-third of the already approved experiments for the 12 GeV Upgrade of the
Thomas Jefferson National Accelerator Facility (JLab) are devoted to the invest-
igation of three-dimensional structure of the nucleon with strong TMD-related
programme.

- Planned Electron-Ion Collider (EIC) is designed as a high luminosity machine with
particularly interesting TMD experiments with polarized hadrons.

Technically, our text is meant to be a continuation of our previous monograph:
— LO. Cherednikov, T. Mertens and F.F. Van der Veken: Wilson lines in quantum field
theory”, De Gruyter, Berlin (2014)

where we are mostly concerned about the mathematical foundations of Wilson loops
and geometrical properties of the generalized loop space. In the present book, we start
with identifying and explaining the most important concepts and ideas that we shall
use in the main body of the text and then develop ab initio calculation techniques ap-
plicable to generic piecewise-linear Wilson lines. We present also the practical tools
for its implementation. Emphasis is put on the issues of gauge-invariance of non-
local path-dependent QCD correlation functions with different Wilson lines keeping
in mind their connection with the geometrical properties of generalized loop space.
The present volume can be used as a primer and an introductory text to the advanced
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expositions presented in the following fundamental books, which deal partially with

similar topics:

— R. Gambini and ]. Pullin: “Loops, knots, gauge theories and quantum gravity”,
Cambridge (1996)

- Y. Makeenko: “Methods of contemporary gauge theory”, Cambridge (2002)

- J. Collins: “Foundations of perturbative QCD”, Cambridge (2011)

The following key topics will be in the center of our exposition:

- Integrated and unintegrated (transverse momentum-dependent) parton density
functions

— Normal-, time- and path-ordering and -ordered exponentials in quantum mech-
anics and quantum field theory

—  Abelian and non-Abelian Wilson lines and loops

— QCD factorization in inclusive and semi-inclusive hadronic processes

— Path dependence and its consequences in the practical calculations of gauge-
invariant correlation functions with Wilson lines

Antwerp, December 2016
L.0. Cherednikov
EF. Van der Veken
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1 Introduction

The purpose of the first two chapters of our book is to identify and explain the most
important concepts, which we shall need to study gauge-invariant path-dependent
quantum correlation functions with Wilson lines. They provide, therefore, an exten-
ded technical introduction to the forthcoming material.

1.1 Main Properties of QCD

Quantum chromodynamics (QCD) is the quantum field theory of strong interaction.
The QCD Lagrangian

Laqcp = Laquark + Lgluon + £ quark-gluon (1.1)

contains the terms describing kinematics of quark and gluon fields, separately, and

their interaction and self-interaction (for gluons). The most efficient approach to

deal with a quantum field theory is to consider interactions as “weak” (in certain
sense) perturbations and to use the Feynman diagram techniques to evaluate matrix
elements, which can be associated with measurable quantities.

For the theory of electrons and photons, quantum electrodynamics (QED), this
approach works more or less straightforwardly. In contrast to QED, QCD possesses
some remarkable properties, which make the direct application of this methodology
impossible.

- Confinement: The QCD Lagrangian is formulated in terms of the quark (fermion)
and gluon (boson) fields, which are considered then as the fundamental degrees
of freedom of the strong interaction. However, these objects do not exist as phys-
ical particles. At the same time, there are no QCD fields for the physical strongly
interacting particles — hadrons. Therefore, the QCD matrix elements should be
calculated for the physical (hadronic) states, while the operators correspond to
the quark and gluon fields.

- Running coupling: After renormalization, the QCD coupling a; starts running, that
is it changes with characteristic energy scale. The same happens to the electro-
magnetic charge in QED, but the behaviour is different: in QED, the coupling
decreases together with the energy scale, while the strong coupling grows up if
the energy goes down. This behaviour implies the property of asymptotic freedom:
at high energy or, equivalently, at small distance, the quarks and gluons can be
considered as free particles and one can expect that the perturbative approach is
applicable.

Hence, we see that one can work with QCD as with a “normal” quantum field theory
by making use of the perturbative expansion only in the asymptotic freedom regime.
However, any hadronic process (even at very high energy) contains not only large
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energy scale, but also a remarkably small one, the hadronization scale, at which
quarks and gluons recombine to make up real hadrons and any perturbative methods
are not applicable.

1.2 Principal Tools to Work with QCD in the High-Energy Regime

Any scattering process in which strongly interacting particles — hadrons — participate,
even those which occur at high centre-of-mass energy

s = (E1 + By,

include also dependence on a low-energy scale, which can be associated with typical
hadron mass M. The large s, however, does not say us anything about the momentum
scale which characterizes the partonic subprocess and which sets up the scale for
the running coupling. The energy of a probe which allows us to penetrate a hadron
to reveal its partonic substructure is called hard. If in a given process, there is no
other energy scale which can be treated as “hard” in the above sense, then the pro-
cess is considered as soft. An important example of such process is given by, e.g. the
elastic hadron—hadron scattering. The methodology of analysis of such reactions goes
beyond pure perturbative techniques and will not be considered here.

We shall focus on the so-called hard hadronic processes in the high-energy
regime. For an inclusive scattering reaction in the ¢-channel,

Py + P; » P| + anything (1.2)

it means that besides the large centre-of-mass energy

s= (P, + P> > M}, (1.3)

where M, is a hadronic mass scale, such as the proton mass, there is also the large
momentum transfer

t = AP? = (P] - P1)? > M}. (1.4)

Given the Heisenberg uncertainty relation, the large momentum transfer suggests that
we can “measure” the intrinsic structure of the hadron with the spatial resolution

Ar? ~ AP7? =71, (1.5)

If ¢ is large enough, we can access to the partonic subprocesses, where the strong
coupling is small and the perturbation theory can be reasonably justified.

Still, we have to specify how the low-energy part of the total reaction (1.2)
should be taken into account. The QCD factorization approach provides an
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appropriate method to merge the high- and low-energy regimes and perform

efficient calculations.

- In a few words, the idea of QCD factorization consists in the consistent separ-
ation of large-distance (essentially nonperturbative, hadronization level) § and
small-distance H (perturbatively calculable matrix elements, partonic level) con-
tributions to a given process. The latter is being said to be factorizable if the
differential cross section can be presented as the convolution of the hard and soft
parts

do = Hsmall distance ® Slarge distance- (1-6)

It is important to note that S is expected to be universal, while H depends on a
particular process.

- Contribution of the soft part of the factorization formula (1.6) can be presented
in terms of parton density functions' (PDFs), which accumulate information about
the intrinsic structure of hadrons. More precise, the PDFs determine the probabil-
ity distributions of quarks and gluons confined in the hadron. This is essentially
the basic assumption of the parton model. The parton model is, however, not equi-
valent to QCD. The consistent construction of QCD-improved parton picture and
the appropriate factorization scheme call for a suitable field-theoretical operator
definitions for the PDFs.

Parton density functions in the momentum space can formally be obtained from the
correlation functions of the appropriate quantum field operators of the following
generic form?:

d*z

®(k) = Q)

e * PPy (U o(0)|P)h, (17)

where the field operators ¥,y and the hadronic vectors of state |P) are taken in
the Heisenberg representation and U(’;;O) is a Wilson line or a system of lines which
connects the points z and 0 with an arbitrary trajectory y and make the correlation
function (1.7) gauge-invariant

zZ
Ug) = PeXp (ig f d¢Het A5(¢ )) . (1.8)
0

The matrix elements (1.7) are associated with the hadronic expectation values of the
parton number operators

1 Also parton distribution or fragmentation functions.
2 Here and in what follows we discuss mostly quark correlation functions.
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®(Q) ~ (ahag) = (Ng), (19)

where N stands for the operator which returns the number of particles possessing
quantum numbers {Q} (momenta, spins, colours, etc.) in a given state. The latter
property connects the field-theoretical definition (1.7) with the intuitive ideas of the
original parton model.

Nevertheless, equation (1.7) is too symbolic to make real calculations and useful
predictions possible. The rest of the book is devoted to the identification of the most
important issues and development of the methods to deal with them.



