() Qe TR e

(J%) Timothy A. Budd ¥

g

ATERF Hibtt

EAME JHHE - HEPRESER

WS ET (B3

() §

BEXRF HiMtE
d =

Lo R SR BRI Gk g e

English reprint edition copyright © 2004 by PEARSON EDUCATION
ASIA LIMITED and TSINGHUA UNIVERSITY PRESS.

Original English language title from Proprietor’s edition of the Work.
Original English language title: An Introduction to Object-Oriented
Programming, 3/E, by Timothy A. Budd, Copyright © 2002

All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc.,
publishing as Pearson Education, Inc.

This edition is authorized for sale and distribution only in the People’s
Republic of China (excluding the Special Administrative Region of Hong
Kong, Macao SAR and Taiwan).

A B ENEE B Pearson Education, Inc. {84444 X% H MiAT HRR & 1T -

For sale and distribution in the People’s Republic of China
exclusively (except Taiwan, Hong Kong SAR and Macao SAR).
URTHREARFFMEEN (FEEFEEE. RIFNITHEOTES
EHX) HERT.

LA R EEREGREIES BT 01-2004-3186

IRARFR T, BRED 43T, S4B AIE: 010-62782989 13901104297 13801310933
A B EHERES Pearson Education (54 3 & H AR H) HABHIRE, TR
ZELBHE.

B £ 4w B (CIP) 81 .
1 i X 2 F2 7 ¥ it= An Introduction to Object-Oriented Programming, ®3
B B i T A B S, —Jot, Kt it
2004.9

4 ke FHENLERE SEAR

ISBN 7-302-09395-4

e 10 B T T o RE S — R BT — 808 V. TP312

o B A A B 15 CIP B d% 7 (2004) 35 089351 5

H KR & HEKFE R b i EREERFEHKE
http://www. tup. com. cn Hj #i . 100084
8 #l.010-62770175 ERRE: 010-62776969

HAMGE: LR

IREE. SUFH

HE&: AAEIK

OB E. HEKEERT

s SRR NERIT)

. FeREREIRRITH

. 140X 203 EP3k. 20 M. 500 FF

. 20044 9 A% LA 2004 48 9 A1 KEIRI

. ISBN 7-302-09395-4/TP « 6560

. 1~3000

. 39.00 70

5 9 dio 55 P dh i

*#mﬁiﬁi$$i§‘ﬁmu&&ﬁ‘ﬁjﬁ‘Mﬁ%ﬁﬂﬁﬁirﬁla.ﬁ'—ﬁiﬁﬁéké
5 R A R . R RiE: (010)62770175-3103 8%(010)62795704

Preface

When I began writing my first book on Smalltalk in 1983, I distinctly remember
thinking that I must write quickly so as to not miss the crest of the object-oriented
programming wave. Who would have thought that two decades later object-
oriented programming would still be going strong? And what a long, strange
trip it has been.

In the two decades that object-oriented programming has been studied, it has
become the dominant programming paradigm. In the process, it has changed
almost every facet of computer science. And yet I find that my goal for the third
edition of this book has remained unchanged from the first. It is still my hope
to impart to my students and, by extension, my readers an understanding of
object-oriented programming based on general principles and not specific to any
particular language.

Languages come and go in this field with dizzying rapidity. In the first edi-
tion I discussed Objective-C and Apple’s version of Object Pascal, both widely
used at that time. Although both languages still exist, neither can at present be
considered a dominant language. (However, I talk about Objective-C in the third
edition because from a language point of view it has many interesting and unique
features.) Between the first edition and the third many languages seem to have
disappeared (such as Actor and Turing), while others have come into existence
(such as Java, Eiffel, and Self). Many existing languages have acquired object ex-
tensions (such as Common Lisp and Object Perl), and many have burst onto the
scene for a short while and then just as suddenly disappeared (for example, Sather
and Dylan). Then there is Beta, a language that hints at wonderful ideas behind
an incomprehensible syntax. Prediction is difficult, particularly about the future.
Will languages that are just now appearing, such as Ruby, have staying power, or
will they go the way of Dylan? What about C#? It is difficult to imagine that any
language with Microsoft behind it will fail to be successful, but stranger things
have happened. (Personally, I think that C# will last because it presents a route
for Visual Basic programmers to finally progress to a better language, but that

v

vi @ Preface

few Java or C++ programmers will migrate to the new language. Time will tell if
my powers of foresight are any better than anybody else’.)

For the present edition I have expanded the number of languages that I use
for examples, but I have eliminated many long narratives on a single language.
Descriptions of techniques are often given in the form of tables or shorter expla-
nations. As with the first two editions, I make no pretenses of being a reference
manual for any language, and students producing anything more than trivial pro-
grams in any of the languages I discuss would do well to avail themselves of a
language-specific source.

Nevertheless, in this third edition I have attempted to retain the overall struc-
ture | used in the first two editions. This can be described as a series of themes.

L Introduction and Design. Chapter 1 introduces in an informal setting the basic
concepts of object-oriented programming. Chapter 2 continues this by discussing
the tools used by computer scientists to deal with complexity and how object-
oriented techniques fit into this framework. Chapter 3 introduces the principle
of designing by responsibility. These three chapters are fundamenial, and their
study should not be given short shrift. In particular, I strongly encourage at
least one, if not several, group exercises in which CRC cards, introduced in
Chapter 3, are used in problem solving. The manipulation of physical index cards
in a group setting is one of the best techniques I have encountered for developing
and reinforcing the notions of behavior, responsibility, and encapsulation.

In the past decade the field of object-oriented design has expanded consider-
ably. And for many readers Chapter 3 may either be too little or too much—too
much if they already have extensive experience with object-oriented modeling
languages and design, and too little if they have never heard of these topics. Never-
theless, I have tried to strike a balance. I have continued to discuss responsibility-
driven design, although it is now only one of many alternative object-oriented
design techniques, because I think it is the simplest approach for beginning stu-
dents to understand.

. Classes, Methods, and Messages. Chapters 4 and 5 introduce the basic
syntax used by our example languages (Smalltalk, C++, Java, Objective-C, Object
and Delphi Pascal, and several others) to create classes and methods and to
send messages. Chapter 4 concentrates on the compile-time features (classes and
methods), and Chapter 5 describes the dynamic aspects (creating objects and
sending messages). Chapters 6 and 7 reinforce these ideas with the first of a series
of case studies—example programs developed in an object-oriented fashion and
illustrating various features of the technique.

M. Inheritance and Software Reuse. Although inheritance is introduced in
Chapter 1, it does not play a prominent role again until Chapter 8. Inheritance

Preface vii

and polymorphic substitution is discussed as a primary technique for software
reuse. The case study in Chapter 9, written in the newly introduced language
CH#, both illustrates the application of inheritance and the use of a standard API
(application programming interface).

IV. Inheritance in More Detail. Chapters 10 through 13 delve into the concepts
of inheritance and substitution in greater detail. The introduction of inheritance
into a programming language has an impact on almost every other aspect of
the language, and this impact is often not initially obvious to the student (or
programmer). Chapter 10 discusses the sometimes subtle distinction between sub-
classes and subtypes. Chapter 11 investigates how different languages approach
the use of static and dynamic features. Chapter 12 examines some of the surpris-
ing implications that result from the introduction of inheritance and polymorphic
substitution into a language. Chapter 13 discusses the often misunderstood topic
of multiple inheritance.

V. Polymorphism. Much of the power of object-oriented programming comes
through the application of various forms of polymorphism. Chapter 14 intro-
duces the basic mechanisms used for attaining polymorphism in object-oriented
languages and is followed by four chapters that explore the principal forms of
polymorphism in great detail.

VL. Applications of Polymorphism. Chapter 19 examines one of the most com-
mon applications of polymorphism, the development of classes for common data
structure abstractions. Chapter 20 is a case study that examines a recent addition
to the language C++, the STL. Chapter 21 presents the idea of frameworks, a pop-
ular and very successful approach to software reuse that builds on the mechanisms
provided by polymorphism. Chapter 22 describes one well-known framework,
the Java Abstract Windowing Toolkit. ’

VII. Object Interactions. Starting in Chapter 23 we move up a level of ab-
straction and consider classes in more general relationships and not just the
parent/child relationship. Chapter 23 discusses the ways two or more classes (or
objects) can interact with each other. Many of these interactions have been cap-
tured and defined in a formalism called a design pattern. The concept of design

patterns and a description of the most common design patterns are presented in
Chapter 24.

VIL Advanced Topics. The final three chapters discuss topics that can be
considered advanced for an introductory text such as this one. These include
the idea of reflection and introspection (Chapter 25), network programming
(Chapter 26), and the implementation techniques used in the execution of object-
oriented languages (Chapter 27).

viii © Preface

In the ten-week course I teach at Oregon State University I devote approxi-
mately one week to each of the major areas just described. Students in this course
are upper-division undergraduate and first-year graduate students. In conjunction
with the lectures, students work on moderate-sized projects, using an object-
oriented language of their choice, and the term ends with student presentations
of project designs and outcomes.

Any attempt to force a complex and multifaceted topic into a linear narrative
will run into issues of ordering, and this book is no exception. In general my
approach has been to introduce an idea as early as possible and then in later
chapters explore the idea in more detail, bringing out aspects or issues that
might not be obvious on first encounter. Despite my opinion that my ordering
makes sense, | am aware that others may find it convenient to select a different
approach. In particular, some instructors find it useful to bring forward some of
the software engineering issues that I postpone until Chapter 23, thereby bringing
them closer to the design chapter (Chapter 3). Similarly, while multiple inheritance
is a form of inheritance and therefore rightly belongs in Section IV, the features
that make multiple inheritance difficult to work with derive from interactions
with polymorphism and hence might make more sense after students have had
time to read Section V. For these reasons and many more, instructors should feel
free to adapt the material and the order of presentation to their own particular
circumstance.

Assumed Background ©

I have presented the material in this book assuming only that the reader is
knowledgeable in some conventional programming language, such as Pascal or
C. In my courses, the material has been used successfully at the upper-division
{junior or senior) undergraduate level and at the first-year graduate level. In some
cases (particularly in the last quarter of the book), further knowledge may be
helpful but is not assumed. For example, a student who has taken a course in
software engineering may find some of the material in Chapter 23 more relevant,
and one who has had a course in compiler construction will find Chapter 27 more
intelligible. Both chapters can be simplified in presentation if necessary.

Many sections have been marked with an asterisk (*). These represent op-
tional material. Such sections may be interesting but are not central to the ideas
being presented. Often they cover a topic that is relevant only to a particular
object-oriented language and not to object-oriented programming in general. This
material can be included or omitted at the discretion of the instructor, depend-
ing on the interests and backgrounds of the students and the instructor or on the
dictates of time.

Preface ix

Obtaining the Source ©

Source code for the case studies presented in the book can be accessed via the
mechanism of anonymous ftp from the machine ftp.cs.orst.edu in the di-
rectory /pub/budd/oopintro. This directory will also be used to maintain a
number of other items, such as an errata list, study questions for each chap-
ter, and copies of the overhead slides I use in my course. This information can
also be accessed via the World Wide Web from my personal home pages at
http://www.cs.orst.edu/~budd. Requests for further information can be for-
warded to the electronic mail address budd@cs . orst . edu or to Professor Timothy
A. Budd, Department of Computer Science, Oregon State University, Corvallis,
Oregon 97331.

Acknowledgments ©

I am certainly grateful to the 65 students in my course, CS589, at Oregon State
University, who in the fall of 1989 suffered through the development of the first
draft of the first edition of this text. They received one chapter at a time, often
only a day or two before I lectured on the material. Their patience in this regard is
appreciated. Their specific comments, corrections, critiques, and criticisms were
most helpful. In particular, I wish to acknowledge the detailed comments provided
by Thomas Amoth, Kim Drongesen, Frank Griswold, Rajeev Pandey, and Phil
Ruder.

The solitaire game developed in Chapter 9 was inspired by the project com-
pleted by Kim Drongesen, and the billiards game in Chapter 7 was based on the
project by Guenter Mamier and Dietrich Wettschereck. In both cases, however,
the code itself has been entirely rewritten and is my own. In fact, in both cases
my code is considerably stripped down for the purposes of exposition and is in
no way comparable to the greatly superior projects completed by those students.

For an author, it is always useful to have others provide an independent
perspective on one’s work, and I admit to gaining useful insights into the first
edition from a study guide prepared by Arina Brintz, Louise Leenen, Tommie
Meyer, Helene Rosenblatt, and Anel Viljoen of the Department of Computer
Science and Information Systems at the University of South Africa in Pretoria.

Countless people have provided assistance by pointing out errors or omissions
in the first two editions and by offering improvements. I am grateful to them all
and sorry that 1 cannot list them by name.

I benefitted greatly from comments provided by several readers of an early
manuscript draft of this third edition. These reviewers included Ali Behforooz
(Towson University), Hang Lau (Concordia University, Canada), Blayne Mayfield
(Oklahoma State University), Robert Morse (University of Evansville), Roberto

X © Preface

Ordoiiez (Andrews University), Shon Vick (University of Maryland, Baltimore
County), and Conrad Weisert (Information Disciplines, Inc.). I have made exten-
sive revisions in response to their comments, and therefore any remaining errors
are mine alone and no reflection on their efforts.

For the third edition my capable, competent, and patient editor at Addison-
Wesley has been Susan Hartman-Sullivan, assisted by Elinor Actipis. Final copy
was coordinated by Diane Freed. Layout and production were performed by Paul
Anagnostopoulos and Jacqui Scarlott of Windfall Software. I have worked with
Paul and Jacqui on several books now, and 'm continually amazed by the results
they are able to achieve from my meager words.

Contents

Preface

1 @ Thinking Object-Oriented
1.1 Why Is OOP Popular? 2
1.2 Language and Thought 2
1.2.1 Eskimos and snow 3
122 Anexample from computer languages 3
1.2.3 Church’s conjecture and the Whorf bypothesis
1.3 A New Paradigm 7
1.4 A Way of Viewing the World 8
1.4.1 Agents and communities 9
1.42 Messages and methods 10
1.4.3 Responsibilities 11
1.4.4 Classes and instances 11
1.4.5 Class hierarchies—inheritance 12
1.4.6 Method binding and overriding 14
1.4.7 Summary of object-oriented concepts 14
1.5 Computation as Simulation 15
1.5.1 The power of metaphor 16
1.5.2 Avoiding infinite regression 17

1.6 A Brief History 18
Summary 19
Further Reading 20
Self-Study Questions 22

Exercises 23

Xi

N

xii

o Contents

2 @ Abstraction

21

2.2

2.2.1
222
223
224
225
2.2.6
2.2.7

2.3

2.3.1
2.3.2
2.3.3
234
2.3.5
2.3.6

Object-Oriented Design

3.1
3.2
33

3.4

3.4.1
3.4.2
3.4.3

3.5

3.5.1
352
3.5.3

3.6

Layers of Abstraction 26

Other Forms of Abstraction 30
Division into parts 32

Encapsulation and interchangeability 32
Interface and implementation 33

The service view 34

Composition 34

Layers of specialization 36

Patterns 38

A Short History of Abstraction Mechanisms 39
Assembly language 39

Procedures 40

Modules 41

Abstract data types 43

A service-centered view 44

Messages, inberitance, and polymorphism 44
Summary 45

Further Information 46

Self-Study Questions 47

Exercises 47

Responsibility Implies Noninterference 50
Programming in the Small and in the Large 51
Why Begin with Behavior? 51

A Case Study in RDD 52

The Interactive Intelligent Kitchen Helper 53

Working through scenarios 53
Identification of components 54

CRC Cards—Recording Responsibility 55
Give components a physical representation 55
The what/who cycle 56

Documentation 56

Components and Behavior 57

25

49

3.6.1
3.6.2
3.6.3
3.6.4

3.7

3.7.1
3.7.2
3.7.3
3.7.4

3.8
3.8.1

3.9

3.10
3.1
3.12

Postponing decisions
Preparing for change

Continuing the scenario
Interaction diagrams 61

Software Components
Behavior and state

62

Instances and classes 63

Coupling and cobesion

58
59

59

62

63

Contents

Interface and implementation—Parnas’s principles

Formalize the Interface

Coming up with names

65

65

Designing the Representation

Implementing Components

Integration of Components

Maintenance and Evolution

Summary

Further Reading

69

70

Self-Study Questions 70

Exercises

71

Classes and Methods

4.1

4.2

4.2.1
4.2.2
423
424

4.3

4.3.1
4.3.2
4.3.3

4.4

4.4.1
4.4.2
443

67
67
68

69

Encapsulation 73

Class Definitions 74

C++, Java, and C# 75

Apple Object Pascal and Delphi Pascal
Smalltalk 77

Other languages 79

Methods 80

Order of methods in a class declaration
Constant or immutable data fields
Separating definition and implementation

Variations on Class Themes
Methods without classes in Oberon

Interfaces
Properties

88
89

87

83

87

77

82

83

64

Xiii

73

xiv @ Contents

4.44 Forward definitions 90
4.4.5 Inner or nested classes 91
4.4.6 Classdatafields 94

447 Classes as objects 96

Summary 97
Further Reading 97
Self-Study Questions 98

Exercises 98

5 @ Messages, Instances, and Initialization 101
51 Message-Passing Syntax 101
52 Statically and Dynamically Typed Languages 103
53 Accessing the Receiver from within a Method 104

5.4 Object Creation 106
5.4.1 Creation of arrays of objects 107

5.5 Pointers and Memory Allocation 108
5.5.1 Memory recovery 109

5.6 Constructors 111
5.6.1 The orthodox canonical class form 115
5.6.2 Constant values 116

5.7 Destructors and Finalizers 117
5.8 Metaclasses in Smalltalk 120
Summary 122
Further Reading 122
Self-Study Questions 123
Exercises 123

6 © A Case Study: The Eight-Queens Puzzle 125

6.1 The Eight-Queens Puzzle 125

6.1.1 Creating objects that find their own solution 126
6.2 Using Generators 127

6.2.1 Initialization 128

6.2.2 Finding a solution 129

6.2.3 Advancing to the next position 129

8 ©

Contents

6.3 The Eight-Queens Puzzle in Several Languages

6.3.1 The eight-queens puzzle in Object Pascal 130

6.3.2 The eight-queens puzzle in C++ 133

6.3.3 The eight-queens puzzle in Java 136

6.3.4 The eight-queens puzzle in Objective-C 139
6.3.5 The eight-queens puzzle in Smalltalk 142
6.3.6 The eight-queens puzzle in Ruby 143

Summary 145
Further Reading 145
Self-Study Questions 145

Exercises 146

A Case Study: A Billiards Game
71 The Elements of Billiards 147

7.2 Graphical Objects 148

7.2.1 The wall graphical object 149
7.2.2 The hole graphical object 150
7.2.3 The ball graphical object 151

7.3 The Main Program 155
7.4 Using Inheritance 156
Summary 159
Further Information 159
Self-Study Questions 159
Exercises 160

Inheritance and Substitution

8.1 An Intuitive Description of Inheritance 161
8.1.1 Theis-atest 162
8.1.2 Reasons to use inberitance 162

8.2 Inheritance in Various Languages 164

8.3 Subclass, Subtype, and Substitution 166
8.3.1 Substitution and strong typing 167

8.4 Overriding and Virtual Methods 168
8.5 Interfaces and Abstract Classes 170

XV

147

161

Xvi @ Contents

9 n

8.6

8.6.1
8.6.2
8.6.3
8.6.4
8.6.5
8.6.6
8.6.7
8.6.8
8.6.9

8.7

8.7.1
8.7.2
8.7.3

8.8

8.8.1
8.8.2
8.8.3
8.8.4
8.8.5
8.8.6
8.8.7

8.9

8.9.1
8.9.2
8.9.3
8.9.4

Forms of Inheritance 171

Subclassing for specialization (subtyping) 171
Subclassing for specification 171

Subclassing for construction 172

Subclassing for generalization 173
Subclassing for extension 174

Subclassing for limitation 174

Subclassing for variance 174

Subclassing for combination 175

Summary of the forms of inheritance 175

Variations on Inheritance 176
Anonymous classes in Java 176
Inberitance and constructors 177
Virtual destructors 178

The Benefits of Inheritance 179
Software reusability 179

Code sharing 179

Consistency of interface 179
Software components 179
Rapid prototyping 180
Polymorphism and frameworks 180
Information hiding 180

The Costs of Inheritance 181
Execution speed 181

Program size 181
Message-passing overbead 181
Program complexity 182

Summary 182
Further Reading 183
Self-Study Questions 183

Exercises 184

A Case Study—A Card Game

9.1
9.2
9.3

The Class PlayingCard 187
Data and View Classes 189
The Game 190

187

10 ©

1

o]

Contenis

9.4 Card Piles—Inheritance in Action 191
9.4.1 The default card pile 193

9.4.2 The suit piles 194

9.4.3 Thedeck pile 194

9.4.4 The discard pile 196

9.4.5 The tableau piles 197

9.5 Playing the Polymorphic Game 199
9.6 The Graphical User Interface 199
Summary 204
Further Reading 204
Self-Study Questions 204
Exercises 20§

Subclasses and Subtypes
10.1 Substitutability 207
10.2 Subtypes 208

10.3 The Substitutability Paradox 211
10.3.1 Is this a problem? 212

10.4 Subclassing for Construction 212
10.4.1 Private inberitance in C++ 214

10.5 Dynamically Typed Languages 215
10.6 Pre- and Postconditions 216
10.7 Refinement Semantics 217
Summary 218
Further Reading 218
Self-Study Questions 219

Exercises 219

Static and Dynamic Behavior
11,1 Static versus Dynamic Typing 221

11.2 Static and Dynamic Classes 223
11.2.1 Run-time type determination 22§
11.2.2 Down casting (reverse polymorphism) 227

xvii

207

221

xviii @ Contents

12 ©

13 =

11.2.3 Run-time testing without language support
11.2.4 Testing message understanding 229

11.3 Static versus Dynamic Method Binding 230

Summary 232
Further Reading 233
Self-Study Questions 233

Exercises 234

Implications of Substitution

121 Memory Layout 235

12.1.1 Minimum static space allocation 237
12.1.2 Maximum static space allocation 240
12.1.3 Dynamic memory allocation 240
12.2 Assignment 242

12.2.1 Assignment in C++ 242

12.3 Copies and Clones 245

12.3.1 Copies in Smalltalk and Objective-C 245

12.3.2 Copy constructors in C++ 245
12.3.3 Cloning in Java 246

124 Equality 247
12.4.1 Equality and identity 247
12.4.2 The paradoxes of equality testing 248

Summary 250

Further Reading 251
Self-Study Questions 251
Exercises 251

Multiple Inheritance

13.1 Inheritance as Categorization 254
13.1.1 Incomparable complex numbers 255

13.2 Problems Arising from Multiple Inheritance
13.2.1 Name ambiguity 257

13.2.2 Impact on substitutability 259

13.2.3 Redefinition in Eiffel 260

13.2.4 Resolution by class ordering in CLOS 261

235

253

