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PREFACE

The Fourth Pannonian Symposium on Mathematical Statistics was
held in Bad Tatzmannsdorf, Austria, 4-10 September, 1983. The
first two Symposia were held there in 1979 and_;bBl, whereas
the Third Symposium was staged in Visegrdd, Hungary in 1982.
The proceedings volumes of these conferences,ﬁphblished by
Springer, D. Reidel, and D. Reidel & Akadémiai Kiadd, respec-
tively, give information about the objective of the Pannonian
Symposia and the topics covered.

About 130 participants from 17 countries took part in this
Fourth Symposium, and 92 lectures were presented. This volume
contains 24 reviewed contributions which are mainly mathemati-
cally oriented. A second group of papers dealing with problems
of applied statistics, probability theory and related topics is
published in a separate volume entitled "Mathematical Statistics
and Applications”. ’

The contributions dealing with probability theory con-
centrate on two (intersecting) main topics:on the one hand, sto-
chastic processes, and,on the other hand, limit theorems and in-~
variance principles: Gaussian Processes, approximation of the
Wiener Process, distribution of spacings and of order statis-
tics, limit theorems in triangular arrays. Besides, adjacent
topics like erdogic theory, maximal inequalities; approximation
of convolutions of distribution functions, stochastic program-
" ming etc. are dealt with. In many of these contributions stress
is laid upon the weakening of the assumption of independence.

The subjects of the statistical contributions are even
more homogeneous: there are decision-theofetic papers {(treating

X



admissibility, sufficiency, limits of experiments, etc.) and
papers on nonparametric estimation (nonparametric estimators of
regression curves, further rank-, L- and shrinkage estimators).
One paper gives a comprehensive survey of two-sided parametric
tests. '

The reader will observe at once the close connections be-
tween many of the questions under consideration; in particular,
many results of papers which can be related to probability
theory have immediate applications in statistics, and some
belong to the common boundary of these subjects.

We wish to express our thanks to many persons who gave us
indispensable aid in the edition of this volume: S. Csbrgé,

P. Deheuvels, M. Denker, L. Devroye, W. Eberl jr., B. Gyires,
L. Gybrfi, J. Hurt, M. Huikov4, I. K4tai, A. Kozek, W. Philipp,
D. Plachky, P. Révész, P.K. Sen, F. Schipp and W. Sendler for
their help in refereeing the papers and in other editorial
matters, the secretarial staff of Professor I. Kidtai at the
University of Budapest, who did the laborious typing of the
manuscript under the supervision of Mrs. Z. Andrédsné Xr4lik andg,
last but not least, Akadémiai Kiadd and D. Reidel Publishers for
their good cooperation. (After the refereeing process and retyp-
ing, all papers were returned to the authors for correction.)
. The organization of the Symposium was made possible by the
help of many individuals and institutions. The organizers
gratefully acknowledge the generous support given by the State
Government of Burgenland, the Federal Ministry of Science
and Research, the Austrian Statistical Society, the Control Data
Co., Hypobank of Burgenland Co., the Volksbank Oberwart Co., the
Raiffeisenbank Oberwart Co., the Kurbad Tatzmannsdorf Co. and
the Local Autority of Bad Tatzmannsdorf; special thanks go to
Th. Kery and Dr. R. Grohotolsky (Head and Vice-Head of Burgen-
land resp.), Dr. J. Karall (Member of the State Government of
Burgenland) . DDr. Schranz (Member of State Parliament of Burgen-
land) and Mag. R. Luipersbeck (Director of the Kurbad Tatzmanns-
dorf AG) for their help in many respects. Finally, we express
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our thanks to the ladies for their splendid work in the prepara-
tion and local organization of the meeting, in particular to Ms.
Ingrid Danzinger who patiently undertook most of the typing for
the organization.

Wolfgang WEF @ .

X
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SPACINGS AND ‘APPLICATIONS
PAUL DEHEUVELS

Paris -

Abstract

We prove limiting theorems for the order statistics of k-spacings
and survey some important results obtained in the theory of
spacings with statistical applications.

0. Introduction

The aim of this paper is to survey some important aspects
of the theory of spacings and 1ts applications. We shall prove
also some original results concerning the limiting properties
of maximal k-spacings. k

The paper .is qrganized as foliéwé.jip séétion'1, we give
the main definitions cbnéerniné unifdrm’k%spﬁcihgs ané»discuss
the limiting distributionsvof their upper ofdef statistics. We
also state the main thebfeﬁsfﬁhich h#ve been obcﬁined concerning
strong bounds. Inrsection.z,lwe discuss’ exact andfapproximaté
finite distributibhs, and show their use to obtain uppér and
lower strong béunds for k-spacings when k is fixed; In section
3 we precise the resulfé of Secéion 2 by aifferenf methbds.'In
section 4 we.discuss~m1n1mal kfspacinqs in terms of exact and
asymptotic distributions, and'give strong upper ‘and lower

asymptotic bounds. We alsosdiséuss questions related to the scan



. statistic. In section 5, we review the main applications of
spacings in statistical inference and probability theory. In
‘section 6 we mention some extensions of the theory.for general
distributions and in higher dimensions. Section 7 gives a con-
clusion to our discussion.

) Because of the great amount of material, we have made a

selective choice of the topics we discuss, deliberately over-

looking some important results we could not mention. It follows

that-this paper could hardly pretend to cover the subject,

1. Uniform spacings (I)

Let U4, Ua, ... be a sequence of independent and uniformly

-distributed random variables in (0,1). Let

Uosn = 0< Uyyn < ... < Un,n < Unsssn =1

denote the order statistics of Us, ..., Un.
- -The uniform spacings of order n are defined by

(n)

Si,1 =U - U

i,n i-1,n’ i=t,...,n41.
Likewise, for 1gk<n+1, the uniform k-spacings of order n
are defined by

) B
51,k = Y4,n 7 Yik,nr 17Ks--.onil.
. For 1skgn+1, let

(n) (n)

M(n) . M
nek+2,k < vcr S My <My g
L T )
denote thé order statistics of Si " i=k,...,n+1,
- . . v o

‘A great number of results have been proved recently
) o
concerning the limiting behavior -of {Mjnk,‘1sj5n-k+2}. We shall
- ’ N

. make here a-brief survey of some important facts concerning



these statistics.

Lemma 1.

If Y4, ..., ¥Yn++ are independent exéonentially distributed
random variables, and if Tn4, .= n;1Yi, then {Si :, 1gi<p+1} is
distributed as {Y /T 1siSn+1% 7

n+1’
Proof. See Pyke (1965), Moran (19“7)

}
Let Y4 /D41 < Ya,n+1 € oee £ Yn+1 'n+1 be the Order statis-
5tics of ¥4, ccer ¥Ynseq. It is well known (see f.i. Galambos

(1978)) that (with P(Y,>u) = ™%, w>0)

lim P(Yn+1/ne1 - Log n < u) = e €, —acuc+o,

n-.ﬂ
and likewise, for any fixedlfﬁf;
-u j=-1 =%u

1im P(Yn-j+1,n+1 Log n<u) = e {2 =) <u<+».

n-eo , 2=0
By the weak law of large numbers, we have evideﬂtiy

1im n""Taey = 1 in probability.
n-»o )

‘e

It follows that-

Proposition 1.

For any fixed jz1, we have
-u j-1 -fu

(n) -
1lim P(nM 1 ~ Log n<u) =e € (z ‘ekl =},
n- 3. . =0

Note that the limiting disﬁribution of g;?: has been’
originally obtained by Levy (1939) and SteVens'f1939)‘(see also
Darling (1953) and Le Cam (1958)).

If we consider Mj k instead of M ;, similar results can

be obtained, noting that by Lemma 1, {si L¢ K<n<h#l) is dis-



tributed as {zi,k/Tn+1’ 1<i<n-k+1}, where

i+k-1

2 = I Y

, 1sisn-k+1,
Lk ey M

follows a I'(k,1) Gamma distribution:
k-1 2

P(2 >u) =e ¥z %
i,k g=0 U

For a fixed k21, it can be seen easily that {25 yri21) de-
fines a k-dependent stationary sequence of random variables. We
need here the following lemma due to Watson (195@) (see Galambos
(1978) p. 162). '

Lemma 2.
Let 2., 22, ... be a k-dependent stationary sequence with
common distribution F(x). Assume that an>0 and bn are sequences

of numbers such that, for any x,

1im n(1-F{anx + bn)) = u(x),

-=
where 0<u(x)<= on an interval of positive length. Assume further

that, for any 1<isk,

p(z.>u,zi>u)
lim ———— = 0
utw 1 - F(u)

¥

where w = sup{x,F(x)<1}.

Then

-u(x)’ =X 4o,

"1im P( max Z, < anx + bpn) = e

n-ec 1<i<n i

In the case where zi=zi,k' we havg:

k=1 % uk-‘le-u

- s eUgy u
1 - Flu) =e {zﬁo 3T 1 TTee)T. 28w



and

P(Z4 > u, zi>u) =P(U +V>u, V+W>u),

where U, V and W are respectively Gamma}P(i-1,j), T(k-i+1,1)
and I'(i-1,1), independent random variables. Put r=i-1, s=k-i+1.
We have:
u 2 5-1 ?v
P(Zs>u, Z;>u) = P(V>u) + é (P(U>U-v)) %ETT%T' av,

and
oy =1 2 : oy 5= L
P(O>t) = e Sz £33, p(wu) =e 1z 7,
g=0 *! Cg=0 7t
while
s-1 eV
1 - P(u) = P(U+V>u) = P(V>u) + f P(U>u-v) ¥ —T_——T_ dv .
Siﬂce evidently as u-», P(V>u)/(1-F(u))=0, if we use the
bound
' s=1.-v ‘ vS1eV
I (P(U>u=v))> =7y 9v < P(U>a) f P(USu-v)s—g=— av +

+ P(V>u-a),
where 05as1, it suffices to take a=LogLog u=Logau to prove that

P(Z1>u, Zi>u)
lim

ute 1 - F(u)

=0 .

A direct application of Lemma 2 gives

lim P( max Z, . -Log n-(k-1)Logan +Log(k-1)i<u)=e"® ,
nee  1sisn-k+1 17

—oduge

It follows from this and from Lemma 1 that:

2 Mogyorédi 5



Proposition 2. .

For any fixed j21 and k21, we have, for -o<ud+=,

lim‘P(nM;n; -Log, n -(k-1)LogantLog(k-1)!<u=e € { L =7}

n-»o 4 =

Proof. Strictly speaking, we have given a complete proofv
for j=1. It happens that (see Galambos (1978) p. 203, Exercise
14) one can extend without difficulty Lemma 2 to the case o£
the j-th maximum.

Proposition 2 has been proved for j=1 aod k21 by Holst
(1980), who mentions without details a possible extensionvof his
results for j21. A simple consequence of Proposition 2 is as
follows. ' ‘

Proposition 3.

For any fixed j21 and k21, we have, as n-=,

(n)
nM;nk~- Log n
—leX . k-1 in probability.

Logan

In a series of papers (Devroye (1981, 1982), Deheuvels

n)
(1982, 1983)), the upper and lower strong class of M 1 hav
been investigated. The fofiowing results have been proved to

be true (in the sequel, Log. is the j times iterated logarithm)

«

Proposition 4.
For any fixed j21, for any p24, we have

m)
P(nM,

3.1 n +

> Log n + %( 2Logan +Logsn +...+1.<>gp__1

*w*(1+é3Log n) i.0.)=
(n)

P(nMj 1 < Log n = Logsn - Log 2-¢i.o.)=00r 1,

according as €>0 or €<0.

-6

-u j=1,-%u S



Recently, Deheuvels and Devroye (1983) have proved in

case k21:

and

then

Proposition 5.
If k21 is constant, then, almost surely,

(n) ' .
nM, , - Log n - (k=1) Logan.
lim sup L 2,
n-eo Logzn

(n)
nM ~ Log n - (k=-1) Logzn
1,k

‘1im inf =0

n-o Logan

If k=kn2! is nondecreasing, and if kn=0(Log,n) as n-w,
(n)

nM1'k Log n

lim
n-m,(k-1)L°g(2_E%S_ﬂ)

=1 a.s..

Proposition 5 settles)the case of k-spacings when

the

k=kn=o(Log n). For large k’s, the following result holds, due

to Mason (1983):

Proposition 5.
Let for 1<dsn

m x

§n(d) = max 'M1,k - ;I.

1sksd

Then

1°) If k=kn21 is nondecreasing and such that kn=o(Log n),

n-», we have

lim'nﬁn(k)/Log n=1a.s..

n-»w

2°) If k=kn21 is nondecreasing and such that

k,/Log n+c€(0,+~), we have

2*

1im ndn(k)/Log n = c(a+ - 1) a.s.,
n-»o



where o' 1s the unique root A>1 of A+Log(1/Ax) - 1 = 1/c.

3") If k=k, 21 is nondecreasing and satisfies the so-called

CsérgB-Réveész-Stute conditions, i.e.

(1) k,/Log n - =, k_ /n ~ 0,
(ii) Log{(n/k_ )/Loglog n = «
we have

lim nd, (k)/ {2k Log(n/k )} /2 =1 a.s..

n—- o

Proposition 5’ has obvious applications for the evaluation

of the oscillation of the uniform empirical quantile process.

2. Uniform -spacings. (II)

If we consider the order statistics of the uniform 1-spacings

of order n:

) (n)

mny tn
M < ... <M <M ’
n+1s1 2171 171

(n) .
the exact distribution of Mj 1 is well known and given by:
, .

Lemma 3.
For any 1<js<n+1, we have
j-1 n+1-~h

o (-1)
2=0

2 ,n+1~h

(M (- (he)x) T,

where a, = max(a,0).

Proof. Lemma 3 has been proved originally by Whitworth
(1887), and also by Fisher (1929, 1940), Darling (1953), Flatto
and Konheim (1962), Kendall and Moran (1963) p. 31, Feller
(1966), p. 28, and Holst (1980). Its proof may be derived from

the fact that, if



