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PREFACE

It is generally well knownvthat the Fourier-Laplace trans-
form converts a linear constant coefficient PDE P(D)u=f on " to
an equation P(§)u (§)=f (E), for the transforms u , £ of u and £,
so that solving P(D)u=f just amounts to division by the polyndmial
P(%). The practical application was suspect, and ill understood,
however, until theory of distributions provided a basis for a log-
ically consistent theory. Thereafter it became the Fourier-Laplace
method for solving initial-boundary problems for standard PDE. We
recall these facts in some detail in sec's 1-4 of ch.O.

The technique of pseudodifferential operator extends the
Fourier-Laplace method to cover PDE with variable coefficients,
and to apply to more general compact and noncompact domains or
manifolds with boundary. Concepts remain simple, but, as a rule,
integrals are divergeht and infinite sums do hot converge, forcing
lengthy, often endlessly repetitive, discussions of ffinite partsf
(a type of divergent oscillatory integral existing as distribution
integral) and asymptotic sums (modulo order -«). '

Of course, pseudodifferential operators (abbreviated ydo's)
are (generate) abstract linear operators between Hilbert or Banach
spaces, and our results amount to 'well-posedness' (or normal sol-
vability) of certain such abstract linear operators. Accordingly
both, the Fourier-Laplace method and theory of wdo's, must be seen
in the context of modern operator theory.

To this author it always was most fascinating that the same
type of results (as offered by elliptic theory of ydo;'s) may be
obtained by studying certain examples of Banach algebras of linear
operators. The symbol of a ydo has its abstract meaning as Gelfand
function of the coset modulo compact operators of the abstract ope--
rator in the algebra.

On the other hand, hyperbolic theory, generally dealing with
a group exp(Kt) (or an evolution operator U(t)) also has its mani-
festation with respect to such operator algebras: conjugation with
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exp(Kt) amounts to an automorphism of the operator algebra, and
of the quotient algebra. It generates a flow in the symbol space
essentially the characteristic flow of singularities. In [Ci],
[c:] we were going into details discussing this abstract approach.

We believe to have demonstrated that wydo's are not necessary
to understand these fact. But the technique of ydo's, in spite of
its endless formalisms (as a rule integrals are always 'distribut-
ion integrals', and infinite series are asymptotically convergent,
not convergent), still provides a strongly simplifying principle,
once the technique is mastered. Thus our present discussion of
this technique may be justified.

On the other hand, our hyperbolic discussions focus on in-
variance of ydo-algebras under conjugation with evolution opera-
tors, and do not touch the type of oscillatory integral and fur-
ther discussions needed to reveal the structure of such evolution
operators as Fourier integral operators. In terms of Quantum mecha-
nics we prefer the Heisenberg representation, not the Schroedinger
representation.

In particular this leads us into a discussion of the Dirac
equation and its invariant algebra, in chapter X. We propose it as
algebra of observables.

The basis for this volume is (i) a set of notes of lectures
given at Berkeley in 1974-80 (chapters I-IV) published as preprint
at U. of Bonn, and (ii) a set of notes on a seminar given in 1984
also at Berkeley (chapters VI-IX). The first covers elliptic (and
parabolic) theory, the second hyperbolic theory. One might say
that we have tried an old fashiened PDE lecture in modern style.

In our experience a newcomer will have to reinvent the theo-
ry before he can feel at home with it. Accordingly, we did not try
to push generality to its limits. Rather, we tend to focus on the
simplest nontrivial case, leaving generalizations to the reader.
In that respect, perhaps we should mention the problems (partly of
research level) in chapters I-IV, pointing to manifolds with coni-
cal tips or cylindrical ends, where the 'Fredholm-significant sym-
bol' becomes operator-valued.

The material has been with the author for a long time, and
was subject of many discussions with students and collaborators.
Especially we are indebted to R. McOwen, A.Erkip, H. Sohrab, E.
Schrohe, in chronological order. We are grateful to Cambridge Uni-
versity Press for its patience, waiting for the manuscript.

Berkeley, November 1993 Heinz O. Cordes
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Chapter 0. INTRODUCTORY DISCUSSIONS.

In the present introductory chapter we give comprehensive
discussions of a variety of nonrelated topics. All of these bear
on the concept of pseudo-differential operator, at least in the
author's mind. Some are only there to make studying ydo's appear
a natural thing, reflecting the author's inhibitions to think
along these lines.

In sec.l we discuss the elementary facts of the Fourier
transform, in sec.'s 2 and 3 we develop Fourier-Laplace trans-
forms of temperate and nontemperace distributions. In sec.4 we
discuss the Fourier-Laplace method of solving initial-value pro-
blems and free space problems of constant coefficient partial
differential equations. Sec.5 discusses another problem in PDE,
showing how the solving of an abstract operator equation together
with results on hypo-ellipticity and "boundary-hypo-ellipticity"
can lead to existence proofs for classical solutions of initial-
boundary problems. Sec.6 is concerned with the operator eLt , for
a first order differential expression L . Sec.'s 7 and 8 deal with
the concept of characteristics of a linear differential expression
and learning how to solve a first order PDE. Sec.9 gives a mini-
introduction to Lie groups, focusing on the mutual relationship
between Lie groups and Lie algebras. (Note the relation to Ydo's
discussed in ch,.8).

We should expect the reader to glance over ch.0 and use it
to have certain prerequisites handy, or to get oriented in the
serious reading of later chapters.

0. Some special notations.

The following notations, abbreviations, and conventions will
be used throughout this book.

~-n/2

(a) K= (2n) ax = Kndxldxz...dxn = Kndx .

(d) (%) = (t+[x]% 12 | (&) = (14151212 | ete.
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(c) Derivatives are written in various ways, at convenience:
al

1
For u=u(x)=u(x1,...,xn) we write u‘“)=a§u=a:.a 2 s eel =

X
a a

=a“'/ax“‘;..a “/ax Nu. or, ulx_=ax u, ulx to denote the n-vector

373
with components-u|x ’ Viu for the k-dimensional array with compo-

nents u . For a function of (x,§)=(xl,..,xn,gl,..,En)

(a)_

it is often convenient to write u(ﬁ)—agaﬁu.
(d) A multi-index is an n-tuple of integers u=(al,...,an) .
. a,_,a a

We write |al=|all+...+|an| poal=ag oot ([5)=(‘3 )...([3 ),

g, %y, o

n
s %n n
X0= Xy eeaX , etc,, ¥'={all multi-indices} .

(e) 50;e standard spaces: 2" = n-dimensional Euclidean space
p'=directional compactification of 2" (one infinite point ox added
in every direction (of a unit vector x).

(£) Spaces of continuous or differentiable complex-valued
functions over a domain or differentiable manifold X (or sometimes
only ¥=8"): C(X) = continuous functions on X ; CB(X)= bounded con-
tinuous functions on X; CO(X)= continuous functions on X vanishing
at ® ; CS(X) = continuous functions with directional limits; co(x)
= continuous functions with compact support; ck(x)= functions with
derivatives in €, to order k, (incl. k=x). CBw(x)="all derivatives
exist and are bounded". The Laurent-Schwartz notations D(X)=C§(X),
E(X)=cw(x) are used. Also S= S(Rn)= "rapidly decreasing functions"
(All derivatives decay stronger as any power of x). Also, distri-
bution spaces D', E', S'.

(g) Lp-spaces: For a measure space X with measure dp we wri-
te 1P(x)=1P(X,dp)={measurable functions u(x) with lulp integrable}
for lsp<w; L(X)={essentially bounded functions}. .

{(h) Maps between general spaces: C(X,Y) denotes the conti-
nuous maps X»Y . Similar for the other symbols under (f), i,e.,
CB(X,¥Y) ,eeee o«

(i) classes of linear operators (X= Banach space) : L(X)
(K(X))= continuous (compact) operators; GL(X) (U(H)) = invertible
(unitary) operators of L(X) (of L(H), H=Hilbert space); un=u(mn).
For operators X-» ¥, again, L(X,Y), etc.

(j) The convolution product: For u,v € Ll(Rn) we write w(x)

=(u*v)(x)=KnIdyu(x—y)v(y) (Note the factor Kn=(2n)'n/2).

{k) Special notation: " X CGC Y " means that X is contained
in a compact subset of Y .
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(1) For technical reason we may write lims*oa(e) = a’a»O .

(m) Abbreviations used: ODE (PDE) = ordinary (partial) Qiff-
erential equation (or "expression"). FOLPDE (or folpde)= first ore
der linear partial differential equation (or "expression"); ydo=
pseudodifferential operator.

(n) Integrals need not be existing (proper or improper) Rie-
mann or Lebesgue integrals, unless explicitly stated, but may be
distribution integrals By this term we mean that either (i) the in-
tegral may be interpreted as value of a distribution at a testing

function-the integrand may be a distribution, or (ii) the limit of
Riemann sums exists in the sense of weak convergence of a sequence
of (tempefate) distributions, or (iii) the limit defining an impro-
per Riemann integral exists in the sense of weak convergence, -as
above, or (iv) the integral may be a 'finite part' (cf. I,4).

(o) Adjoints: For a linear operator A we use 'distribution
adjoint' A" and 'Hilbert space adjoint! A*, corresponding to trans-

pose AT and adjoint AT—A , 1n case of a matrix A—((ajk)), respecti-
vely. For a symbols a(x,E), a (or at ) may denote the symbol of
the adjoint ydo of a(x,D) , as specified in each section.

(p) supp u (sing supp u (or s.s.u)) denotes the (singular)
support of the distribution u.

1. The Fourier transform; elementary facts.

Let u € LI(R“) be a complex-valued integrable function.
Then we define the Fourier transform u*= Fu of u by the integral

(1.1) w (x) = f nd&\l(%)e—mE , x er?,
R
with xt=x.§=2g=1xj 3 an existing Lebesgue integral. Clearly,

(1.2) e ()] s ully, = f nfxlu(x) |
1 R
Note that u* is uniformly continuous over R : We get

(1.3) lur (x)~w (y)| = 2J§§|Sin(X-Y)E/zllu(E)l

s NlX‘Yl”uﬂLl + 2I|E|ZN gEluE)] .

where the right hand side is <e¢ if N is chosen for flEIEN <t /4,
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and then |x-y|< &/(2N]u] {). Moreover, we get u"€ co(r™, i.e.,
L

limlxl*“y‘(x)=0, a fact, known as the Riemann-Lebesque lemma.

To prove the latter, we reduce it to the case of u € c:(kn):

The space C? is known to be dense in Ll . By (1.1) we get

(1.4) Jur (x)=v* (x)] s [fu=v] { <&/2 ., asvE Cz s u=vi 1<e/2.
L L

Hence limlxl*“y‘(x)=o implies |u*] = |u*-v*| + |v*| < & whenever
x is chosen according to |v*| < g/2 .

But for v € c: the Fourier integral extends over a ball |E&]
< N only, since v=0 outside. We may integrate by parts for

(1.5)  |x|%w (x) =-IA§(e‘ixE)v(E>¢E =—J§Ee‘ix§<Av>(§) =—(AV)" (x) ,

with the Laplace differential operator AE = 22_165 2, Clearly we
BEERS

1

have Av € C: C L as well, whence (1.1) applies to Av , for

(1.6) Ive )| = lavl (/1%12 >0, as |x| » =,
L

completing the proof.
The above partial integration describes a general method to
be applied frequently in the sequel. (1.6) may be derived under

the weaker assumptions that vE Cz, and that all derivatives v(u),
1

1

lajs2 , are in L' (cf. pbm.5). On the other hand, there are simple

examples of u L~ such that u* does not decay as rapidly as (1.6)

indicates. In particular, u€ I' exists with u'& L' (cf.pbm.4).
This matter becomes important if we think of inverting the

linear operator F:L1 =+ CO defined by (!.1), because formally an

inverse seems to be given by almost the same integral. Indeed,

define the (complex) conjugate Fourier transform 'F—‘:Ll »> CO by

Fu = (Fu) , or, u' = Fu , where

(1.7) w (x) = fﬁ&eix§u<§) ,uesnt@a) .

Then, in essence, it will be seen that F is the inverse of
the operator F. More precisely we will have to restrict F to a
(dense) subspace of Ll, for this result. Or else, the definition

of the operator F must be extended to certain non-integrable func-
tions, for which existence of the Lebesgue integral (1.7) cannot
be expected. Both things will be done, eventually.
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It turns out that F induces a unitary operator of the Hil-
bert space Lz(kn): We have Parseval's relation:

(1.8) f hﬁxlu‘(x)(z - f ndx(u(x)tz , for all u € L' (®™)?x") .
R R

Formula (1.8) is easier to prove as the Fourier inversion
formula, asserting u**=u'"=u for certain u: We may write

j ’
assuning that u,vE€ Ll(Rn) , with the ‘cube’ QN={|xj|sN,j=l,..,N} '
some integer N>0. Indeed, the interchange of integrals leading to
(1.9) is legal, since the integrand is L'(QNanan)

- - N ix (B -1.)
(1.9) fQN¢Xu~(x)v~(x) = J¢§¢nu(§)v(n)r§=| l e J 7370 ax

sin sN

N
Note that I el5tar = 2210

-N
evaluation of the inner integrals at right of (1.9). With [dEdn =
JEEfd) , andn =& ~C/N , @) = N % , (1.9) assumes the form

» S#0 , = 2N , s=0, allowing

(1.10) fgudxﬁ~(x)v-(x) = deG(E)IﬁCV(E—C/N)ﬂg=1¢(Cj) '

where @(t) = (2/xn) , t#0, continuously extended into t=0.
For ve& C(Rn), as N»» , the function v(§-L/N) will converge
to v(E), independent of { . Thus one expects the inner integral at
right of (1.10) to converge to v(&)fng=1¢(§j)¢§j = v(E) , since
[oe]

(1.11) sin t dt/t = n/2 .
0

Legalization of this argument will confirm Parseval's rela-

172 sin t
t

tion, since the right hand converges to the right hand side of
(1.8), as N»x., With u€ L' and vE cz (setting mn(C)=rb(§j)) write

(1.12) fﬁsE(§>J¢C¢n(C)(v(&—t/ﬂ)-v(&)) - JQNde*v~ - JRndev -

To show that the inner integral at left goes to 0 as N»x it is
more skilful to use the integration variable 6=(/N, d§=NndB. For

n={ , fsin N8 (v(E-8)-v(E))d6/6 = IIBISG + Ilelzﬁ =I,+1I,.
Here we get (with w(8) = (V(E-0)-v(E))/0 )

ENEL Iet((u(@)cos(noy (520, + flelzacos(ue)WIO(e)de).
The latter gives I = %E("V"me nv'HLw) , with a constant ¢, only

depending on the volume of supp v, i.e., it is fixed after fixing
v . The estimates imply the inner integral to go to 0, uniformly
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as x€ R". For u€ L' the Lebesgue theorem then implies the left
hand side of (1.12) to tend to 0, as N»x , for each fixed vE C: .
For general n the proof is a bit less transparent, but remains
the same: Split the inner integral into a sum of integrals over a
small neighbourhcod of 0 and its complement. In the first term use
differentiability of v; in the second an integration by parts.
We now have a 'polarized' Parseval relation, in the form

(1.13) j dxu* v = J dxuv , for u € !, vec®.
- . 0

For u € L!'m? pick a sequence u.EC. with lu=usf > 0, [fu-usfl ,» 0,
j-o RSN 372

. as is possible. Then, since u.-ule c§ C L2 , (1.13) with u=v=uj-v

implies [u.*-u,* =Ju,-u » 0, j,1 » «. In other words, u_. and
plies Juy -uy" | p=lus-u] 5> 0. 3 3

uj* both converge in 12 . Clearly, u."- u*. Indeed, initially we
showed uniform convergence over &7, while the L’ -limit z=lim uj‘

satisfies (u‘,¢)=JE¢dx for all ¢€ cs. This yields I(u*-z)¢dx=o for

all such ¢, hence u =z (almost everywhere), since c: is dense in

I* . Substituting u=v=u_ in (1.13), letting j»», it follows that
(1.8) is valid for all u € L{ﬂLz , confirming Parseval's relation.

Clearly (1.13) also holds for all u,vE L'(1L?. We use it to
prove the Fourier inversion Let n=1. For vE L' (L?, u=x[°'x°], some
%0 >0 apply (1.13). Confirm by calculation of the integral that

(11a) 2w ) = (@ 1)/-ix) =y (), x £ 0,
hence

on J _
(1.15) vix)dx = dxv"(x)hXo(x)dx .

0

) The Fourier inversion formula is a matter of differentiating
(1.15) for x under the integral sign, assuming that this is legal
Consider the difference quotient:

Xo +0 . s
(1.16) (2{'))-1 f v(x)dx = f}va(x)elXXo sg: ox .
Xo =0

Assuming only that v , v* both are in Ll , it follows indeed that

(1.17) 1inm‘.,*0(26)"’fQ av(x)dx =f¢xv“ (x)eX o (v ) (%), xE R,
Xo ,

(Actually, our proof works for n=1 , %X > 0 only , but can easily
be extended to all x , and general n . One must replace the deri-
vative d/dxe by a mixed derivative an/(axol...axnn). ) Indeed,
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letting 8+0 in ({.17) we obtain (1.15), using that sin(dx) /(dx)
=+ 1 uniformly on compact sets, and boundedly on R , as 6-0 .
If v is continuous at Xq then clearly the left hand side
of (1.17) equals v(x ) , giving the Fourier inversion formula, as
it is well known. For n=1, if v has a jump at X% then the left
hand side of (1.17) equals the mean value (V% +0)+v(x0 -0) ) /2 .
Again for n=! a limit of (t.16), as 8-0 exists, if only

f+a

(l.lg) llma*w J vt (x)dx |,

the principal value, exists (cf. pbm.6), without requiring v € 1'.
We summarize our results thus far:

Proposition 1.1. The Fourier transform u* of (1.1) and its com-

plex conjugate u' =(u')” are defined for all u € Ll(nn) , and we
have uw* , uw € co(nn) . For u € L’(mn)rmz(x”) we have Parseval's
relation (1.8) . If both u (S Ll(kn) and u* € Ll(mn) hold, then we
have u** (x) = u'* (x) = u(x) for almost all x €™ .

It is known that the Banach space L’(Rn) is a commutative
Banach algebra under the convolution product

(t.19) urtv = w , w(x) = fsiyu(X-y)W(y) = fﬂyV(X-Y)U(Y) .
Indeed,
(1.20) HWHL1=IIW(X>ldx = andXIdylu(X-y)Hv(y)l = anuHLlenLl .

Prop.1.2, below, clarifies the role of the Fourier transform F for
this Banach-algebra: F provides the Gelfand homomorphism.

Proposition 1.2. For u,v €1' let w = u*v ., ?hen we have
(1.21) ‘;"(E) =uw(E)v(E) , E €r".
Proof. We have

v (8) = Jawe™% [ayacoyyoeyy - P I

The substitution x-y=z , dy=dz thus confirms (1.21), g.e.d.
The importance of the Fourier transform for PDE's hinges on

Proposition 1.3. 1If u(ﬁ) S Ll for all fs< a then

(1.22) ul®ee) < glalga. gy | =



