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PREFACE TO
SECOND EDITION

The second edition of Bayesian Signal Processing incorporates a chapter on “Sequen-
tial Bayesian Detection” (Chapter 10) and a section on “Ensemble Kalman Filters”
(Section 6.7), as well as an expansion of case studies in the final chapter (Chap-
ter 11). These new “physics-based™ studies detail Bayesian approaches to problem
solving in real-world applications incorporating detailed particle filter designs, adap-
tive particle filters, and sequential Bayesian detection. In addition to these major
developments, a variety of sections are expanded to “fill in the gaps™ of the first
edition. Here, metrics for particle filter (PF) designs with emphasis on classical
“sanity tests,” introduced earlier in model-based processors, led to ensemble tech-
niques as a basic requirement for performance analysis. Next, the expansion of
information theory metrics (Kullback—Leibler divergence (KD), Hellinger distance
(HD)) and their application to PF designs is discussed. These “fill-in-the-gap™ expan-
sions provide a more cohesive discussion with examples and applications enabling
the comprehension of these alternative approaches to solving estimation/detection
problems.

Detection theory, and more specifically sequential detection theory, is closely
coupled to sequential estimation techniques presented in this text and is often the
primary reason for constructing the estimators in the first place [1]-[14]. Sequential
techniques find application in many technical application areas such as radar, sonar
(detection/tracking), biomedical (anomaly detection/localization), speech (recogni-
tion/tracking), communications (real-time/obstructed environments), the sciences
(e.g.. seismology (earthquakes), structures (vibrations), materials (additive manu-
facturing/threat detection), radiation (threat detection, etc.), and of course, a huge
variety of military applications [3], [7]. By incorporating a new chapter on sequential
detection techniques primarily aimed at the binary decision problem, we enable the
extension of these estimation methods to an entire class of problems especially when
a physical model is available that can be incorporated into the algorithm [4], [6]. This
new chapter, in itself, will provide wider application, since sequential detection is
such a natural extension to sequential estimation and vice versa.

xiii
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The ensemble Kalman Filter (EnKF) addition to the second edition is an area
that has been neglected in most non-specialized texts. The EnKF is basically a lit-
tle known hybrid in the engineering area, but well-known in the sciences. It is a
hybrid of a regression-based processor (e.g., unscented Kalman filter (UKF)) and a
particle-like (PF) “sampling” filter. The EnKF is well known in science areas where
large-scale computations are required such as seismology, energy systems (wind,
ocean waves, etc.), weather prediction, climatology (global warming), computational
biology, large structures (vibrations), and more because of its computational efficiency
for very large-scale computational problems (super-computer applications). Here, the
coupling of model-based Bayesian techniques to these large-scale problems is unique.

With this in mind, let us consider the construct of the new chapter entitled “*Sequen-
tial Bayesian Detection.” Here, we develop the Bayesian approach to decision the-
ory primarily aimed at a coupling of sequential Bayesian estimation to sequential
decision-making. We start with the binary decision problem for multi-channel mea-
surements and develop the usual Bayesian solutions based on probability-of-error
minimization leading to the well-known Bayes’ risk criterion. Next, the Neyman—
Pearson detection approach (maximize detection probability for fixed false-alarm
probability) is developed and compared to the classical Bayesian schemes illustrat-
ing their similarity and differences. Once these “batch schemes™ are developed, we
introduce the Wald sequential approach to solving these problems in pseudo real time
[3], [7]. Once developed, we then investigate a variety of performance criteria based
on the receiver operating characteristic (ROC) curve and its variants that provide the
foundations for classical analysis [9], [ 10]. Other metrics (e.g., area-under-curve, and
so on) associated with the ROC curve are introduced and applied as well. With the
sequential detection theory developed, we investigate the basic linear Gaussian case
and demonstrate that a sequential scheme easily follows when coupled to the model-
based (Kalman) processor. Next, we generalize this approach to nonlinear models and
again under Gaussian-like approximations develop the sequential detection scheme
[7]. Finally, we remove the Gaussian assumptions and show how, using an MCMC
(particle filter), sequential detection schemes can be developed and applied. A variety
of applications are included in case studies on anomaly/change detection.

Finally, sequential detection enables the inclusion of more relevant case studies
(Chapter 11) in ocean acoustics and physics-based radiation detection as well as X-
ray threat material detection offering a completely different perspective on classical
problem solving incorporating these physics-based approaches from the sequential
Bayesian framework.

JAMES V. CANDY
Danville, CA
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PREFACE TO FIRST EDITION

In the real world, systems designed to extract signals from noisy measurements are
plagued by errors evolving from constraints of the sensors employed, random dis-
turbances and noise, and probably, most common, the lack of precise knowledge
of the underlying physical phenomenology generating the process in the first place!
Methods capable of extracting the desired signal from hostile environments require
approaches that capture all of the a priori information available and incorporate them
into a processing scheme. This approach is typically model-based [1], employing
mathematical representations of the component processes involved. However, the
actual implementation providing the algorithm evolves from the realm of statistical
signal processing using a Bayesian approach based on Bayes’ rule. Statistical sig-
nal processing is focused on the development of processors capable of extracting the
desired information from noisy, uncertain measurement data. This is a text that devel-
ops the “Bayesian approach™ to statistical signal processing for a variety of useful
model sets. It features the next generation of processors which have recently been
enabled with the advent of high-speed/high-throughput computers. The emphasis is
on nonlinear/non-Gaussian problems, but classical techniques are included as special
cases to enable the reader familiar with such methods to draw a parallel between the
approaches. The common ground is the model sets. Here, the state—space approach
is emphasized because of its inherent applicability to a wide variety of problems
both linear and nonlinear as well as time invariant and time-varying problems includ-
ing what has become popularly termed “physics-based” models. This text brings
the reader from the classical methods of model-based signal processing including
Kalman filtering for linear, linearized and approximate nonlinear processors as well
as the recently developed unscented or sigma-point filters to the next generation of
processors that will clearly dominate the future of model-based signal processing for
years to come. It presents a unique viewpoint of signal processing from the Bayesian
perspective in contrast to the pure statistical approach found in many textbooks.
Although designed primarily as a graduate textbook, it will prove very useful to the
practicing signal processing professional or scientist, since a wide variety of appli-
cations are included to demonstrate the applicability of the Bayesian approach to
real-world problems. The prerequisites for such a text is a melding of undergraduate

xvii
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work in linear algebra, random processes, linear systems, and digital signal process-
ing as well as a minimal background in model-based signal processing illustrated in
the recent text [ 1]. It is unique in the sense that few texts cover the breadth of'its topics,
whereas, the underlying theme of this text is the Bayesian approach that is uniformly
developed and followed throughout in the algorithms, examples, applications, and
case studies. It is this theme coupled with the hierarchy of physics-based models
developed that contribute to its uniqueness. This text has evolved from three previ-
ous texts, Candy [1-3] coupled with a wealth of practical applications to real-world
Bayesian problems.

The Bayesian approach has existed in statistical physics for a long time and can
be traced back to the 1940s with the evolution of the Manhattan project and the
work of such prominent scientists as Ulam, von Neumann, Metropolis, Fermi, Feyn-
man, and Teller. Here the idea of Monte Carlo (MC) techniques to solve complex
integrals evolved [4]. Since its birth, Monte Carlo related methods have been the
mainstay of many complex statistical computations. Many applications have evolved
from this method in such areas as physics, biology, chemistry, computer science, eco-
nomics/finance, material science, statistics and more recently in engineering. Thus,
statisticians have known for a long time about these methods, but their practicali-
ties have not really evolved as a working tool until the advent of high-speed super
computers around the 1980s. In signal processing, it is hard to pinpoint the actual
initial starting point but clearly the work of Handschin and Mayne in the late 1960s
and early 1970s [5, 6] was the initial evolution of Monte Carlo techniques for signal
processing and control. However, from the real-time perspective, it is probably the
development of the sequential Bayesian processor made practical by the work of
Gordon, Salmond, and Smith in 1993 [7] enabling the evolution and the explosion
of the Bayesian sequential processor that is currently being researched today. To put
this text in perspective, we must discuss the current signal processing texts available
on Bayesian processing. Since its evolution much has been published in the statistical
literature on Bayesian techniques for statistical estimation; however, the earliest texts
are probably those of Harvey [8], Kitigawa and Gersch [9], and West [10] which
emphasize the Bayesian model-based approach incorporating dynamic linear or non-
linear models into the processing scheme for additive Gaussian noise sources leading
to the classical approximate (Kalman) filtering solutions. These works extend those
results to nonGaussian problems using Monte Carlo techniques for eventual solu-
tion laying the foundation for works to follow. Statistical MC techniques were also
available, but not as accessible to the signal processor due to statistical jargon and
abstractness of the discussions. Many of these texts have evolved during the 1990s
such as Gilks [11], Robert [12], Tanner:[13], Tanizaki [ 14], with the more up-to-date
expositions evolving in the late 1990s and currently such as Liu [4], Ruanaidh [15],
Haykin [16], Doucet [17], Ristic [ 18], and Cappe [19]. Also during the last period a
sequence of tutorials and special IEEE issues evolved exposing the MC methods to the
signal processing community such as Godsill [20], Arulampalam [21], Djuric [22],
Haykin [23], Doucet [24], Candy [25], as well as a wealth of signal processing papers
(see references for details). Perhaps the most complete textbook from the statistical
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researcher’s perspective is that of Cappe [19]. In this text, much of the statistical
MC sampling theory is developed along with all of the detailed mathematics—ideal
for an evolving researcher. But what about the entry level person—the engineer, the
experimentalist, and the practitioner? This is what is lacking in all of this literature.
Questions like, how do the MC methods relate to the usual approximate Kalman
methods? How does one incorporate models (model-based methods) into a Bayesian
processor? How does one judge performance compared with classical methods?
These are all basically pragmatic questions that the proposed text will answer in a
lucid manner through coupling the theory to real-world examples and applications.
Thus, the goal of this text is to provide a bridge for the practitioners with enough
theory and applications to provide the basic background to comprehend the Bayesian
framework and enable the application of these powerful techniques to real-world
problem solving. Next, let us discuss the structure of the proposed text in more detail
to understand its composition and approach.

We first introduce the basic ideas and motivate the need for such processing while
showing that they clearly represent the next generation of processors. We discuss
potential application areas and motivate the requirement for such a generalization.
That is, we discuss how the simulation-based approach to Bayesian processor design
provides a much needed capability, while well known in the statistical community,
not very well known (until recently) in the signal processing community. After intro-
ducing the basic concepts in Chapter 1, we begin with the basic Bayesian processors
in Chapter 2. We start with the Bayesian “batch™ processor and establish its con-
struction by developing the fundamental mathematics required. Next we discuss
the well-known maximum likelihood (ML) and minimum (error) variance (MV) or
equivalently minimum mean-squared error (MMSE) processors. We illustrate the
similarity and differences between the schemes. Next, we launch into sequential
Bayesian processing schemes which forms the foundation of the text. By examining
the “full” posterior distribution in both dynamic variables of interest as well as the full
data set, we are able to construct the sequential Bayesian approach and focus on the
usual filtered or filtering distribution case of highest interest demonstrating the fun-
damental prediction/update recursions inherent in the sequential Bayesian structure.
Once establishing the general Bayesian sequential processor (BSP), the schemes that
follow are detailed depending on the assumed distribution with a variety of model
sets.

We briefly review simulation-based methods starting with sampling methods,
progressing 1o Monte Carlo approaches leading to the basic iterative methods of
sampling using the Metropolis, Metropolis-Hastings, Gibb’s, and slice samplers.
Since one of the major motivations of recursive or sequential Bayesian processing
is to provide a real-time or pseudo real-time processor, we investigate the idea of
importance sampling as well as sequential importance sampling techniques leading
to the generic Bayesian sequential importance sampling algorithm. Here we show
the solution can be applied, once the importance sampling distribution is defined.

In order to be useful, Bayesian processing techniques must be specified through
a set of models that represent the underlying phenomenology driving the particular
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application. For example, in radar processing, we must investigate the propagation
models, tracking models, geometric models, and so forth. In Chapter 4, we develop the
state—space approach to signal modeling which forms the basis of many applications
such as speech, radar, sonar, acoustics, geophysics, communications, control, etc.
Here, we investigate continuous, sampled-data and discrete state—space signals and
systems. We also discuss the underlying systems theory and extend the model-set to
include the stochastic case with noise driving both process and measurements leading
the well-known Gauss—Markov (GM) representation which forms the starting point
for the classical Bayesian processors to follow. We also discuss the equivalence of the
state-space model to a variety of time series (ARMA, AR, MA, elc.) representations
as well as the common engineering model sets (transfer functions, all-pole, all-zero,
pole-zero, etc.). This discussion clearly demonstrates why the state—space model
with its inherent generality is capable of capturing the essence of a broad variety of
signal processing representations. Finally, we extend these ideas to nonlinear state—
space models leading to “approximate” Gauss-Markov representation evolving from
nonlinear, perturbed and linearized systems.

In the next chapter, we develop classical Bayesian processors by first motivating
the Bayesian approach to the state—space where the required conditional distributions
use the embedded state—space representation. Starting with the linear, time-varying,
state—space models, we show that the “optimum™ classical Bayesian processor under
multivariate Gaussian assumptions leads to minimum (error) variance (MV) or equiv-
alently minimum mean-squared error (MMSE), which is the much heralded Kalman
filter of control theory [1]. That is, simply substituting the underlying Gauss-Markov
model into the required conditional distributions leads directly to the BSP or Kalman
filter in this case. These results are then extended to the nonlinear state—space repre-
sentation which are linearized using a known reference trajectory through perturbation
theory and Taylor-series expansions. Starting with the linearized or approximate GM
model of Chapter 4, we again calculate the required Bayesian sequential proces-
sor from the conditionals which lead to the “linearized” BSP (or linearized Kalman
filter) algorithm. Once this processor is developed, it is shown that the “extended”
Bayesian processor follows directly by linearizing about the most currently available
estimate rather than the reference trajectory. The extended Bayesian processor (XBP)
or equivalently extended Kalman filter (EKF) of nonlinear processing theory evolves
quite naturally from the Bayesian perspective, again following the usual development
by defining the required conditionals, making nonlinear approximations and devel-
oping the posterior distributions under multivariate Gaussian assumptions. Next, we
briefly investigate an iterative version of the XBP processor, again from the Bayesian
perspective which leads directly to the iterative version of the extended Bayesian pro-
cessor (IX-BP) algorithm—an effective tool when nonlinear measurements dominate
the uncertain measurements required.

Chapter 6 focuses on statistical linearization methods leading to the modern
unscented Bayesian processor (UBP) or equivalently sigma-point Bayesian processor
(SPBP). Here we show how statistical linearization techniques can be used to trans-
form the underlying probability distribution using the sigma-point or unscented non-
linear transformation technique (linear regression) leading to the unscented Bayesian
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processor or equivalently the unscented Kalman filter (UKF). Besides developing the
fundamental theory and algorithm, we demonstrate its performance on a variety of
example problems. We also briefly discuss the Gaussian-Hermite quadrature (G-H)
and Gaussian sum (G-S) techniques for completeness.

We reach the heart of the particle filtering methods in Chapter 7, where we discuss
the Bayesian approach to the state-space. Here the ideas of Bayesian and model-based
processors are combined through the development of Bayesian state—space particle
filters. Initially, it is shown how the state—space models of Chapter 4 are incorporated
into the conditional probability distributions required to construct the sequential
Bayesian processors through importance sampling constructs. After investigating
a variety of importance proposal distributions, the basic set of state-space particle
filters (SSPF) arc developed and illustrated through a set of example problems and
simulations. The techniques including the Bootstrap, auxiliary, regularized MCMC
and linearized particle filters are developed and investigated when applied to the set
of example problems used to evaluate algorithm performance.

In Chapter 8, the important joint Bayesian SSPF are investigated by first developing
the joint filter popularly known as the parametrically adaptive processor [1]. Here
both states and static as well as dynamic parameters are developed as solutions to
this joint estimation problem. The performance of these processors are compared to
classical and modern processors through example problems.

In Chapter 9, the hidden Markov models (HMM) are developed for event-
related problems (e.g., Poisson point processes). This chapter is important in order
to place purely discrete processes into perspective. HMM evolve for any type
of memoryless, counting processes and become important in financial applica-
tions, communications, biometrics, as well as radiation detection. Here we briefly
develop the fundamental ideas and discuss them in depth to develop a set of tech-
niques used by the practitioner while applying them to engineering problems of
interest.

In the final chapter, we investigate a set of physics-based applications focusing
on the Bayesian approach to solving real-world problems. By progressing through
a step-by-step development of the processors, we see explicitly how to develop and
analyze the performance of such Bayesian processors. We start with a practical laser
alignment problem followed by a broadband estimation problem in ocean acoustics.
Next, the solid-state microelectromechanical (MEM) sensor problem for biothreat
detection is investigated followed by a discrete radiation detection problem based
on counting statistics. All of these methods invoke Bayesian techniques to solve
the particular problems of interest enabling the practitioner the opportunity to track
“real-world” Bayesian model-based solutions.

The place of such a text in the signal processing textbook community can best
be explained by tracing the technical ingredients that comprise its contents. It can
be argued that it evolves from the digital signal processing area primarily from
those texts that deal with random or statistical signal processing or possibly more
succinctly “signals contaminated with noise.” The texts by Kay [26-28], Therrien
[29], and Brown [30] all provide the basic background information in much more
detail than this text, so there is little overlap at the detailed level with them.
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This text, however, possesses enough theory for the graduate or advanced graduate
student to develop a fundamental basis to go onto more rigorous texts like Jazwinski
[31], Sage [32], Gelb [33], Anderson [34], Maybeck [35], Bozic [36], Kailath [37,
38], and more recently, Mendel [39], Grewel [40], Bar-Shalom [41], and Simon [42].
These texts are rigorous and tend to focus on Kalman filtering techniques ranging
from continuous to discrete with a wealth of detail on all of their variations. The
Bayesian approach discussed in this text certainly includes the state-space models
as one of its model classes (probably the most versatile), but the emphasis is on
various classes of models and how they may be used to solve a wide variety of signal
processing problems. Some of the more recent texts about the same technical level,
but again, with a different focus are Widrow [43], Orfanidis [44], Shart [45]. Haykin
[46], Hayes [47], Brown [30], and Stoica [48]. Again, the focus of these texts is not
the Bayesian approach but the narrow set of specific models and the development
of a variety of algorithms to estimate these sets. The system identification literature
and texts therein also provide some overlap with this text, but again the approach is
focused on estimating a model from noisy data sets and not really aimed at developing
a Bayesian solution to a particular signal processing problem. The texts in this area
are Ljung [49, 50], Goodwin [51], Norton [52], and Soderstrom [53].

The recent particle filtering texts of Ristic [18] and Cappe [19] are useful as
references to accompany this text, especially if more details are required on the
tracking problem and the fundamental theorems governing statistical properties and
convergence proofs. That is, Ristic’s text provides an introduction that closely follows
the 2002 tutorial paper by Arulampalam [21] but provides little of the foundational
material necessary to comprehend this approach. It focuses primarily on the tracking
problem. Cappe’s text is at a much more detailed technical level and is written
for researchers in this area not specifically aimed at the practitioner’s viewpoint.
The proposed text combines the foundational material, some theory along with the
practice and application of PF to real-world applications and examples.

The approach we take is to introduce the basic idea of Bayesian signal processing
and show where it fits in terms of signal processing. It is argued that BSP is a natural
way to solve basic processing problems. The more a priori information we know about
data and its evolution, the more information we can incorporate into the processor
in the form of mathematical models to improve its overall performance. This is
the theme and structure that echoes throughout the text. Current applications (e.g.,
structures, tracking, equalization, biomedical) and simple examples are incorporated
to motivate the signal processor. Examples are discussed to motivate all of the models
and prepare the reader for further developments in subsequent chapters. In each case,
the processor, along with accompanying simulations, is discussed and applied to
various data sets demonstrating the applicability and power of the Bayesian approach.
The proposed text is linked to the MATLAB (signal processing standard software)
software package providing notes at the end of each chapter.

In summary, this Bayesian signal processing text will provide a much needed
“down-to-earth” exposition of modern MC techniques. It is coupled with well-known
signal processing model sets along with examples and problems that can be used
to solve many real-world problems by practicing engineers and scientists along



PREFACE TO FIRST EDITION xxiii

with entry-level graduate students as well as advanced undergraduates and post-
doctorates requiring a solid introduction to the “next generation” of model-based
signal processing techniques.

JamEes V. CANDY

Danville, CA
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LIST OF ABBREVIATIONS

ABSP adaptive Bayesian processor

ACC accuracy

ACS attenuation coefficient sequence

ADC analog-to-digital conversion

AlIC Akaike information criterion

ALE adaptive line enhancer

AMBP adaptive model-based processor

AR autoregressive (model)

ARMA autoregressive moving average (model)
ARMAX autoregressive moving average exogenous input (model)
AROC average receiver operating characteristic (curve)
ARX autoregressive exogenous input (model)
ASIR auxiliary sequential importance resampling
AUC area-under-curve (ROC curve)

BP Bayesian processing

B-R Bayes’ risk (detector)

BSP Bayesian signal processing

BW bandwidth

CD central difference

CDF cumulative distribution

CM conditional mean

CRLB Cramer—Rao lower bound

C-Sq Chi-squared (distribution or test)

CT continuous-time

CTD concentration-temperature-density (measurement)
EKF extended Kalman filter

EM expectation-maximization

EnBP ensemble Bayesian processor

EnKF ensemble Kalman filter

FN false negatives

FP false positives
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