* THE FIRST BOOK OF

Macmtnsh
Pascdd O

G

N

THE FIRST BOOK OF
MACINTOSH™ PASCAL

Paul A. Sand

Osborne MeGraw-Hill
Berkeley, California

Published by

Osborne McGraw-Hill
2600 Tenth Street
Berkeley, California 94710
US.A.

For information on translations and book
distributors outside of the U.S.A., please write to
Osborne McGraw-Hill at the above address.

Copy II Mac is a trademark of Central Point Software, Inc.
Macintosh is a trademark of Apple Computer, Inc.

THE FIRST BOOK OF MACINTOSH™ PASCAL

Copyright © 1985 by McGraw-Hill, Inc. All rights reserved. Printed in the
United States of America. Except as permitted under the Copyright Act of
1976, no part of this publication may be reproduced or distributed in any
form or by any means, or stored in a data base or retrieval system, without
the prior written permission of the publisher, with the exception that the
program listings may be entered, stored, and executed in a computer system,
but they may not be reproduced for publication.

234567890 DODO 898765
ISBN 0-07-881165-1

Cindy Hudson, Acquisitions Editor
Paul Hoffman, Technical Editor
Catherine Pearsall, Copy Editor
Chery! Creager, Composition
Yashi Okita, Cover Design

¢
¢
}
i

SN o gy e s L S,

i
t
t

INTRODUCTION

This book is an introduection to the Pascal programming lan-
guage and to the version of that language on the Apple
Macintosh computer. You can use this book regardless of your
level of expertise in computer programming. If you are an
absolute beginner, don’t worry; it is our assumption that you
know nothing about either programming in general or Pascal
in particular. We will explain everything you need to know in
order to write, enter, and run programs in Pascal on the
Macintosh.

Even if you already have some familiarity with the Pascal
programming language, you will find this book useful.
Macintosh Pascal is like no other version of Pascal you have
ever used —just as the Macintosh itself is like no other com-
puter you have used. We will attempt to explain and demon-
strate many of the major features of Macintosh Pascal, espe-
cially those that aren’t found in “Standard” Pascal.

Book Philosophy

Computer programming is a skill that is learned by doing. No
book yet written can take the place of the actual experience
you will gain in designing and writing your own programs.
Realizing this, we will not promise that simply reading this
book will make you a seasoned expert in Macintosh Pascal:
our goals are more modest. This book will

¢ Provide you with a description of Macintosh Pascal’s fea-
tures and how these features are used in programs.

vii

® Give you the rules of the language: what is legal, what
isn’t legal.

e Show you many examples of Macintosh Pascal pro-
grams that demonstrate how the language can be used
to access many of the hardware and software features of
the Macintosh itself.

¢ Provide you with some suggestions for changing the
programs presented here as well as ideas for your own
programs. Ideally, this should get you started in learn-
ing how to program on your own.

In general, the emphasis in this book will be on the final
two points: to show you how Macintosh Pascal works and to
spark your own curiosity enough to discover more on your
own. We will lean heavily on example programs throughout
the text to accomplish this.

Somewhat less emphasis will be placed on the more “for-
mal” aspects of Pascal: the precise rules that make one Pas-
cal statement legal and another one unacceptable. Many of
the formal rules of Pascal are designed to make sense of very
unusual program constructions, ones unlikely to occur in
everyday programming. We will forego explaining such rules
in all their mind-numbing detail. Instead, we will concentrate
on developing your intuitive sense for what’s right and what’s
wrong in Pascal.

As a user of Macintosh Pascal, you own or have access to
the documentation provided with the Macintosh Pascal soft-
ware. You should look upon this book as a supplement to the
Macintosh Pascal documentation, not as a replacement. The
Macintosh Pascal reference manuals are complete, concise,
and rigorous. This approach has the advantage that you may
look there for the exact rules on what you may or may not do
in your Pascal programs. The disadvantage is that it is diffi-
cult for programming novices and other programmers not
familiar with Macintosh Pascal to sort through the descrip-
tions of every last nit-picking rule and restriction to extract
the truly useful information present in the reference
manuals: the knowledge you will need every time you write a
Pascal program.

In this text, we provide a more leisurely and less formal
introduction to Macintosh Pascal. We concentrate on the
“good parts” of Macintosh Pascal: those that can be used eas-
ily by both programmers unfamiliar with either Pascal and

viii The First Book of Macintosh Pascal

programmers who know Pascal but may not be acquainted
with the Macintosh’s version of the language.

Why Learn to Program?

As you probably know, everything the Macintosh (or any
other computer) does is controlled by its software: programs
that tell the computer what to do in various situations and
how to accomplish useful tasks. Learning to program is,
simply stated, discovering how to tell the computer to “do
things.”

For many people, computer use is restricted to using pro-
grams someone else has written. Given the increasing sophis-
tication and usefulness of commercially available computer
software, this is a perfectly workable strategy for many, if not
most, computer users. You have an inalienable right not to
learn to program your computer, if you so choose.

Having said that, however, here are some reasons why you
might, after all, want to undertake the task of writing your
own programs:

¢ Learning to program will give you a better idea of how
the computer works and what it can and cannot do.

® Programming is, like mathematics, an intellectual dis-
cipline that is inherently worth knowing.

¢ Knowing how to program can stand you in good stead
when a computer problem arises at work or at home for
which no available prewritten software applies. Depend-
ing on your expertise, you may be able to write a pro-
gram to solve the problem, often with less time and
expense than if you had sought commercially available
software for the same purpose.

¢ Programming can be profitable. People who don’t know
how (or don’t have time) to program will pay you money
to make their computer jump through designated hoops.

¢ Last, but not least, programming is fun—a truly end-
less source of amusement. If you enjoy intellectual chal-
lenge, thinking a problem through to its solution, and
the sense of accomplishment that occurs when some-
thing works as it should, you will find programming to
be immensely enjoyable. In a sense, programming is the
ultimate computer game.

Introduction ix

Why Learn Pascal?

If you decide to learn to program, you need to learn at least
one programming language. In this book, obviously, we are
suggesting you learn the programming language called Pas-
cal. Pascal was developed in the late 1960s by Niklaus Wirth.
His aims were to produce a language suitable for teaching
programming concepts clearly and systematically and to
make the language usable on a large number of computers.
His success is obvious: Pascal’'s popularity has increased
rapidly since its introduction, and versions of the language
are available on many computers, ranging from small, inex- %
pensive personal computers to large mainframe systems. ’

Why is Pascal so popular? The primary reason is that Pas-
cal makes the job of writing, reading, and modifying comput-
er programs easier than do many other programming
languages.

Here are some ways in which Pascal is a convenient lan-
guage for programmers. (You need not worry if you don’t f
understand all or any items on this list, by the way. We'll be ;
seeing how all these things work later.) :

* Pascal has “structured” control statements (while,
repeat, for, case, and if-then-else) that allow the pro-
grammer to write clear and concise code with the flow
of control proceeding from top to bottom. The control
flow in programs written in languages lacking these {
structured control statements often contains complex
webs of if tests and goto statements. Such programs are
often called “spaghetti code” because they are so diffi-
cult for even experienced programmers to untangle. i

® Pascal permits the programmer to break up a large
program into smaller, relatively independent procedures
and functions, each one of which performs a single, eas-
ily understood task. Each procedure or function can
have its own set of “private” variables that are only used
when that procedure or function is executed. Each
procedure or function has well-defined input and output
parameters used for communicating with its calling
routine. This decomposition of a large program into
modules greatly aids the programmer in both the initial
design of the program and also in any subsequent modi-
fications to the program; the modules can also be reused

X The First Book of Macintosh Pascal

in subsequent programs, decreasing the overall pro-
gramming effort.

® Pascal allows programmers to define their own data
types and data structures in addition to those already
built into the language. Judicious use of this feature can
make a program more compact and easy to understand.

® Pascal allows the use of long identifiers for variables,
procedures, and functions. This allows the programmer
to use names with mnemonic significance, another aid
in understanding a program.

Although Pascal is a good computer language, it is not a
perfect one. And it isn’t suitable for all applications. Rather
than go into Pascal’s deficiencies here, however, we'll merely
note that a good deal of serious software development is car-
ried out in Pascal. And even if Pascal isn’t your programming
language of choice, you will find that learning Pascal will
make learning and using other programming languages
much easier.

Why Learn Macintosh Pascal?

As we will see in the first chapter, the “programming envi-
ronment” provided by the Macintosh Pascal software is extra-
ordinarily easy to use. In order to write Pascal programs on a
typical computer system, you have to learn how to use a
number of different programs, each with its own set of hard-
to-remember commands and rules. This, fortunately, isn’t the
case with Macintosh Pascal: there are no complex command
sequences to memorize, nor are there separate “editor,”
“compiler,” or “debugger” programs to master. You need only
learn to use the Macintosh Pascal software in order to be able
to enter, run, and modify your own Pascal programs.

Macintosh Pascal uses most of the conventional elements
of the Macintosh user interface: pull-down menus, multiple
overlapping windows on the screen, mouse selection, and so
on. In fact, if you know how to use a word processing program
like MacWrite or Microsoft Word, you already know nearly
everything you need in order to enter your Pascal programs
into the computer.

Macintosh Pascal is therefore an excellent way to learn

Introduction xi

the Pascal language. But that’s not all: built into Macintosh
Pascal is the capability for you to control nearly all aspects of
your computer’s operations. These capabilities include some
not offered with languages costing many times more than
Macintosh Pascal. (As before, you shouldn’t worry if you don't
understand everything —or anything —on this list as yet.)

o Macintosh Pascal provides a variety of numeric data
types that make it possible to write precise and reliable
computational programs.

* Macintosh Pascal supplies a number of extensions to the
Standard Pascal language that make writing common
application programs easier: there is a built-in string
data type, an otherwise clause on the case statement,
sophisticated memory management, and direct-access
file I/O routines, to name a few. (These final two topies
are relatively advanced, however, and won't be consid-
ered in this text.)

¢ Macintosh Pascal allows programs to access most of the
capabilities of the Macintosh; for example, built-in rou-
tines callable from Pascal programs allow your pro-
grams to manipulate windows, use the mouse, the clock,
and the sound generator.

® Probably the most interesting feature is Macintosh Pas-
cal’s ability to call the QuickDraw routines and other
software contained in the Macintosh’s read-only memory.
QuickDraw is an extensive “library” of routines that
allows your programs to perform awesome feats of
graphies magic.

Macintosh Pascal, while an excellent learning environ-
ment, is not suited to writing large application programs. In
computer jargon, Macintosh Pascal is an interpreted lan-
guage, rather than a compiled one. Compared to programs
written in other languages, you may observe that your Macin-
tosh Pascal programs are rather slow. (They may very well be
fast enough for your purposes, however.) Also, your Pascal
programs can't run “by themselves” the Macintosh Pascal
system must be present in the computer’s memory at the
same time. This imposes a relatively restrictive upper limit
on the size of your Pascal programs.

On balance, however, Macintosh Pascal is an excellent
learning and programming tool for all but the most demand-
ing applications.

xii The First Book of Macintosh Pascal

Hardware Requirements

Macintosh Pascal will run on any Apple Macintosh computer;
it will also run on an Apple Macintosh XL (Lisa) computer
system set up with the MacWorks Macintosh-emulation soft-
ware. You may run Macintosh Pascal on a bare-minimum
Macintosh system with 128K bytes of memory and the single
built-in disk drive.

As with most software for the Macintosh, additional
hardware will make working with Macintosh Pascal easier. A
second disk drive, while not required, will greatly decrease
the time you spend on the drudgery of removing and insert-
ing disks. If you add a printer to the system, you'll be able to
get listings of your Pascal programs on paper. Expansion to
512K bytes of memory will permit you to write and use much
larger programs under Macintosh Pascal than is possible
with a 128K system. (Memory expansion will also allow your
other Macintosh software to handle large amounts of data
more easily.) All programs in this book will fit easily in a
128K Macintosh, however.

How to Read the Rest of the Book

As previously indicated, computer programming is one of
those subjects that can’t be learned by simply reading a book
(even a good book). So in order to get the most out of this
book, you should read it in front of your computer. Try the
example programs in each chapter as you read. Don’t be
afraid to experiment with the example programs; we'll even
suggest some possible experiments to you as we go along.

Even more important to learning a computer language is
the ability to take the descriptions and examples of the lan-
guage elements given here and apply them when the time
comes to write programs of your own. This, too, is an ability
that only comes with practice. In addition to the experiments
you can try out on our example programs, we’ll suggest some
problems you can try to solve by writing your own programs
“from scratch.”

If you are a novice to programming, simply start at the
beginning. You will find that the material in most chapters
depends heavily on information from previous chapters, so

Introduction xiii

skipping ahead to a seemingly more interesting chapter is
generally a bad idea.

If you already know some other version of the Pascal lan-
guage, you will probably not want to plod through the chap-
ters of this book that contain material you already know.
Macintosh Pascal is Pascal, after all, and if you know Pascal,
you already know an appreciable fraction of the material
covered in this book. You might find it more interesting to
take a fast track through “Macintosh Pascal-only” parts of
the book, skimming or skipping sections that cover material
you already know.

We will make it easy for you to do just that. Material in
this book that applies only to Macintosh Pascal will usually
be confined to individual sections and chapters, not scattered
throughout the text. For easy identification, these sections
and chapters will all have the word “Macintosh” in their
titles.

Chapter One will introduce you to Macintosh Pascal, tak-
ing you through a step-by-step example of writing and run-
ning a simple program. All readers should probably work
through this chapter.

Chapter Two introduces the fundamental concepts of Pas-
cal: constants, variables, integer, real, and Boolean types,
assignment statements, expressions, operator precedence,
simple input and output operations, and looping control struc-
tures. This chapter contains very little Macintosh-specific
material.

Chapter Three discusses advanced editing techniques
you'll use in Macintosh Pascal: selecting, cutting, pasting,
and copying blocks of text, finding and replacing pieces of
your program, and general disk housekeeping. Much of this
material will be familiar to those acquainted with other
Macintosh software, but some Macintosh Pascal-only rules
are discussed.

Chapter Four discusses Pascal’s decision control structures:
if-then-else, case, and goto; it contains very little Macintosh-
only material.

Chapter Five covers Macintosh Pascal’s marvelous debug-
ging aids: the Observe and Instant windows, program break-
points, and step-by-step program execution.

Chapter Six explores six additional Macintosh Pascal data
types: characters, strings, long integers, and three additional
kinds of real numbers: computational, double, and extended.

xiv The First Book of Macintosh Pascal

Of these six data types, only characters are present in Stan-
dard Pascal.

Chapter Seven is an introduction to built-in or library
functions available for use in your Pascal programs. This
includes both standard functions built into nearly every ver-
sion of Pascal, and Macintosh Pascal functions to accomplish
tasks such as string manipulation, binary arithmetic, and
other special Macintosh operations.

Chapter Eight considers built-in library procedures in
Macintosh Pascal, including the first description of Quick-
Draw routines.

Chapter Nine discusses how to go about programming
your own procedures and functions. This is mostly Standard
Pascal material.

Chapter Ten introduces the concept of defining your own
data types and illustrates the principle using enumerated and
subrange types.

Chapter Eleven covers Pascal’s “structured” types: ar-
rays, sets, and records, including variant records.

Chapter Twelve discusses many of Macintosh Pascal’s
predefined types and how they are used to access additional
QuickDraw capabilities, as well as other Macintosh features,

Not covered in this text are “advanced” Pascal topics such
as recursion, file I/0, pointers, and handles. Our coverage of
QuickDraw, while sufficient to allow you to write useful pro-
grams that generate sophisticated graphics, doesn’t cover
many powerful aspects of QuickDraw that are less easy to
use. Advanced sound generation using the four-voice synthes-
izer, event management, direct “in-line” calls to the Macin-
tosh’s ROM Toolbox routines, and use of the Standard Apple Numeric
Environment (SANE) library are also not discussed in this
book.

Recommended Reading

The original definition of the Pascal language was described
in Pascal User Manual and Report by Kathleen Jensen and
Niklaus Wirth (Springer-Verlag, 1978). This book contains a
concise but well-written description of the legalities of the
Pascal language. It remains a good introduction to Pascal for
those who are familiar with another computer language.

Introduction xv

Recently both the American National Standards Institute
(ANSI) and the International Standards Organization (ISO)
have approved Pascal standards that clear up the minor
ambiguities contained in the original Jensen and Wirth Pas-
cal. The “Level 0” ISO Standard is equivalent to the ANSI
standard. A good, readable description is found in Standard
Pascal User Reference Manual by Doug Cooper (W.W. Norton,
1983).

In nearly all cases there is no difference between
ANSI/ISO Pascal and Jensen and Wirth Pascal. When we use
the term “Standard Pascal,” we will be referring to either
one. In cases where there is a difference, we will explicitly
say which interpretation we are using.

xvi The First Book of Macintosh Pascal

CONTENTS

Introduction

Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter

O 0 N & B & W N

Chapter 10
Chapter 11

Chapter 12

Index

Getting Started With Macintosh Pascal
Variables and Loops

Macintosh Pascal: Editing and Disk Use
Decision Making

Macintosh Pascal Debugging Aids
More Data Types

Introduction to Library Functions
Introduction to Library Procedures
Your Own Procedures and Functions
Your Own Data Types

Structured Data Types: Arrays,
Records, and Sets

Macintosh Pascal Structured Types

vii
1
29
83
101
131
151
175
213
257
289

303
349
403

GETTING
STARTED WITH
MACINTOSH PASCAL

The first program to write is the same in all
languages. ..

—B. Kernighan and D. Ritchie
The C Programming Language
(Prentice-Hall, 1978)

Our goal in this chapter is to acquaint you with most of the
basic operations you'll be performing every time you program
in Macintosh Pascal. You will learn how to enter programs
into the computer and how to correct the inevitable mistakes
you will make in the process. The chapter discusses how to
run your program once you have typed it in and how to make
further modifications to your program. You’ll find out how to
save programs on disk and how to print them on your printer.

A REVIEW OF
MACINTOSH FUNDAMENTALS

This book will assume that you have at least some experience
in operating the Macintosh. Since Macintosh Pascal and most
Macintosh applications use the same basic operations, if you
have used any other Macintosh program, you already know

just about everything you need to know to use Macintosh
Pascal.

If you are a complete novice to the Macintosh, we suggest
that you take time to explore the features of the Macintosh,
either by using the excellent “Guided Tour” casette tapes pro-
vided with your computer or by following the more tradi-
tional method of reading the Macintosh user manual.

In order to use Macintosh Pascal, you should be acquainted
with the following topies and terms:

o Moving the mouse. By moving the mouse around your
desktop, you move the pointer around the Macintosh
screen. Usually the pointer is an arrow pointing north
by northwest, but its shape changes depending on where
it is pointing and what the Macintosh is doing at the
time. (When necessary, the text will refer to the point-
er’s shape, for example the I-beam pointer.)

® Clicking. Many operations involve moving the pointer to
a certain object and then pressing and quickly releasing
the mouse button. In Macintosh jargon, this is called
clicking the object. For example, to “click the Pascal
disk icon” means to move the pointer to the picture of
the Pascal disk on the screen and then press and quickly
release the mouse button. Like most operations on the
Macintosh, this is far easier done than said.

® Double-clicking. This operation only differs from click-
ing in that you press and release the mouse button twice
in quick succession after positioning the pointer.

® Pressing. To press something means to move the pointer
to it and then hold down the mouse button without mov-
ing the mouse.

* Dragging. To drag, you position the pointer on an object;
press the mouse button and, holding it down, move the
mouse to another position; then release the button. The
object to which you originally pointed will move to the
new pointer location.

® Menu selection. A menu (a list of possible command
choices) is displayed when you press one of the words or
phrases in the menu bar at the top of the screen. To
choose one of the commands, drag to the command you
want and release the mouse button. For example, if you
were instructed to “choose Go from the Run menu,” you
would (1) move the pointer to the word “Run” in the

2 The First Book of Macintosh Pascal

menu bar, (2) press and hold the mouse button, (3) move the
pointer downward in the displayed menu until the word
“Go” was highlighted, and (4) release the mouse button.
Again, this sounds more complex than it actually is.

® Opening icons. Application programs, your own pro-
grams and word processing documents, pictures, and
other material stored on the disks are often represented
as little pictures called icons on the Macintosh screen.
Some icons are shown in Figure 1-1. Disks themselves
are also represented as disk icons. The most commor
operation on these icons is to open them. Opening an icon
creates a window through which you can view the con-
tents of the icon. (What precisely happens depends on
what the icon represents.) To open an icon, you select the
icon by clicking it and then choose Open from the File
menu. A faster method is simply to double-click the icon.

Close box

Active window title bar

/—- Window title

I===== Miscellany

]

S items 78K in folder 279K available
——Scroll arrow
Seroll bar
LOh
Fg
Rocket 0 2= Seroll box
\v Sample Xjemo
Y csvax
Fonts Icon
Size box

Figure 1-1.

Window anatomy

Getting Started With Macintosh Pascal 3

