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PREFACE

A SUITABLE sub-title for this book would have been ‘The time-variable in
thermodynamics’, for throughout the emphasis is placed on the role of time
scales, in determining both the state coordinates of equilibrium thermo-
dynamics (Part I) and the affinities or thermodynamic forces of irreversible
processes (Part II). The notion that the entropy of a system depends inter alia
on the time scale on which it is observed (or equivalently on how detailed is
the observer’s information about it) is employed in both parts to make clear
the unity of classical, kinetic, statistical, and process thermodynamics. This
practical approach also enables us to resolve the occasional paradoxes that
arise with entropy and its increase in isolated systems, for these can usually
be traced to the false belief in the existence of an absolute entropy, a belief
unfortunately encouraged by the currently-popular axiomatic freatments of
thermodynamics. Thermodynamics is, above all, an approximating science in
which it is necessary not only to understand the various limit forms it can
take but also the physics of the asymptotics involved. ,

My aim initially was to write a concise account of the thermodynamics
of irreversible processes in gases. plasmas, and other fluids, placing a greater
emphasis on the underlying assumptions and less on chemical applications
than the few reliable texts presently available. But it became clear at an carly
stage of writing that the key and unavoidable hypothesis of ‘local thermo-
dynamic equilibrium’ needs much more elaboration than it usually receives.
The concept of thermodynamic equilibrium is not nearly as simple and
precise as most accounts imply ; and without a clear idea of its meaning, it is
pointless for the student to advance to process thermodynamics. Thus Part |
(on equilibrium thermodynamics) was written to serve both as a survey of the
principal ideas of the subject and, because of its emphasis on the relative
nature of ‘equilibrium’, as a suitable introduction to Part I1.

Part I starts with what may be called ‘engineering’ thermodynamics, for it
deals with long-time-scale external processes ; it is based on the first three
laws of thermodynamics, which combine to define an entropy S via the
fundamental formula TdS = dU + p dV. The observer's time scale is then
progressively shortemed, and at each step terms added to the fundamental
equation to represent the increasing knowledge assumed of the system:
and so we proceed through ‘chemical’ thermodynamics and ‘kinetic’ thermo-
dynamics to the ultimate description contained in statistical thermodynamics.
By introducing an internal coordinate ¢, defined over an ‘interior’ space y,
we are able to transform the fundamental expression for TdS into the pre-
scription § = —k ) £ In &, which, unconstrained. holgs on all time scales.
[t is the constraints that are added to tutn the prescription into a genuine



v PREFACE

definition that are time-scale dependent. and the shorter the observer’s time
_scale the greater the number of constraints that must be imposed.
I hope this novel approach will provide a useful skeletal survey of basic
thermodynamics suitable for final-year students in the physical sciences.
In Part 1II the concepts of process thermodynamics (often confusingly
termed ‘non-equilibrium’ thermodynamics. despite the fact that local
. thermodynamic equilibrium is a sine qua non ingredient) are explained and
applied 1o a variety of fluid phenomena. There are four basic ideas.

First there is the separation of processes into reversible and irreversible
eléments, a division that depends on the physical model assumed to represent
the system. And when the reverslble changes of entropy are known. the rate
o at which entropy is irreversibly created can be expressed as a bilinear form.
say, ¢ = JX. where J and X are vectors repres¢ntmg the various processes
and thermodynamnc forces in the s stem In all this time scales play an
important part. Asa is non egative. we have the basic inequalitye = JX 2 0.
which has much the role in process thermodynamics as does the
fundamental equatxo;mﬁ JU +T 'pdV +...=2ZdY, say, for
equilibrium thermodynamics. From the latter we use the fact that dS is the
exact differential ofa funci)«s S(Y)to infer the existence of state equations
Z = Z(Y); and likewise 2 0 requires J and X to vanish together. we
may infer constitutive relations J = J(X) from the bilinear fokm.

With the assumption of linear constitutive relations, say J = LX. where
L is a phenomenological matrix, we come to the second basic idea of process
thermodynamics, namely, the existence of reciprocal relations between the
coefficients L;; of L, which in the simplest case are L,; = L. In essence. these
relations are due to W. Thomson (Lord Kelvin), although Il :s usual to dismiss
his arguments as being too intuitive to offer a convincing proof. On the other
hand, the accepted treatment. due to L. Onsager. relies too much on the
analogy taken to exist between the regression of large thermodynamic
fluctuations and macroscopic processes like heat or current flux that persist
not only in stationary flow conditions but, more importantly. in systems
pressed to the (thermodynamic) limit at which fluctuations strictly vanish.
The new approach offered in this book (along with accounts of the works of
Thomson and Onsager) resembles Thomson’s in being genuinely ‘macro- -
scopic’. By the time-scale arguments required to draw the distinction between
. reversibility and .irreversibility, it is shown that the essential nature of the
reciprocal relations is that they ensure that the entropy production rate
o = XLX is due only to irreversible processes.

The two remaining basic concepts are common to all branches of macro-
scopic physics. They are ‘reference-frame indifference’, which requires the
constitutive relations to be expressible in covariant form, and ‘material
invariance’, by which spatial symmetries known to exist in the system enable
us to reduce substantially the number of independent elements appearing in
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L. Particular attention has been given to the lateral isotropy of magneto-
plasmas, in which the magnetic field imposes a characteristic direction on the
medium.

The use of internal coordinates ¢ permits a great extension in the scope of
process thermodynamics. And when constitutive relations for &(r) are known
or assumed, some or all of these coordinates may be eliminated with the
effect of replacing the instantaneous constitutive relation J = LX by the
integral relation J(t) = [ y(t—t)X(t')dt’, where ¥(r) is a phenomeno-
logical response function. If, further, owing to thermodynamic fluctuations,
the &(¢) are assumed to be stochastic processes, the theory leads on to the’
important fluctuation-dissipation theorem, of which the earliest examples are
contained in Einstein’s work on Brownian motion and Nyquist’s on Johnson
noise.

Fluid mixtures are systems for which the systematic approach of process
thermodynamics is particularly useful, for the number of possible processes
and cross-couplings between them may be quite large. A general account of
mixture theory, which includes the effects of mass transfer between the
components, is followed by applications to two important examples, namely,
magneto-plasmas and helium I1. A magneto-plasma can be described ade-
quately by a two-fluid theory on a certain time scale and is a good example of
an anisotropic medium. Helium I, on the other hand, has the interesting
feature (rather neglected in standard treatments) that its normal and super-
fluid components can exchange mass elements. These aspects have been
pursued to the stage of obtaining some new results for each mixture. Rotating
helium 11, which is an anisotropic medium, is also given some attention.

Kinetic constitutive relations are described in the final chapter. The set
S,,S,,.. S, ofentropies for the one-particle (F,), two-particle (F3), ... r-particle
(F,) distribution functions yields a sequence of non-negative entropy produc-
tion rates $,,83,,.. $, from which may be inferred constitutive relations for
F,, F, .. of increasing accuracy. This approach yields the kinetic equations of -
Boltzmann, Bogoliubov, and others, and may have some merit over the usual
methods of closing the BBGKY hierarchy of equations. In any case it reveals
the close similarity between kinetic equations and the constitutive relations
of macroscopic fluid dynamics.

Part II will, I hope, be of interest to graduates working in continuum
mechanics and other branches of macroscopic physics.

Among the many relevant texts and articles I have studied—of which only
those essential to the textual argument have been cited—I am particularly
indebted to the work of S. R. de Groot and P. Mazur (1962), which first
engaged my attention in the thermodynamics of irreversible processes. And
perhaps it is right to admit too that a growing aversion to axiomatic thermo-
dynamics, with its penchant for substituting deductive mathematical construc-
tions in place of physics, has stimulated me to write this book, and in it to
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emphasize the approximations inherent in thermodynamics, or at least those
approximations associated with time scales. It is, of course, the existence of
such approximations that makes thermodynamics such a rich and diverse
branch of physics.

1 am grateful to both H. Troughton and Stanley Morris for help with
checking the manuscript and proofs, to Mrs. Ina Godwin for her excellent
typing of rather complicated material, and finally to the Delegates of the
Oxford University Press for accepting my biased recommendation as a
series editor that the work was suitable for publication in the Oxford Engin-
cering Science Series.

Mathematical Institute L.CW.
Oxford University
August, 1974
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1

THERMODYNAMIC VARIABLES AND
PROCESSES

1. Thermodynamic systems

1.1. Macroscopic variablés

BEFORE describing a thermodynamic system, we shall consider some of the
general properties of a real physical system consisting of matter and radiation
lying in a finite region of space. Because of the atomic constitution of matter,
there are small lengths and times, termed ‘microscopic’, in which substantial
changes in the properties of individual particles (molecules, atoms, protons,
electrons, photons, etc.) can occur. Thus, for example, under STP conditions
in air the momentum mw of a typical molecule of mass m and velocity w
is significantly changed over a distance of a mean free path A (x10~%cm)
and in a mean free time t = A/lwj (= 10 '%s). On the other hand, the averages
of particle properties like the momentum per unit mass v = (mw)/(m)
and the energy per unit mass u = (4mw?)/(m) taken over the enormous
numbser of particles (= 107) in a microscopic volume element (x 107 '2 cm?)
usually change over much larger length L and time 4~ scales. Such averages
are termed ‘macroscopic’ properties and L and  “are the macroscopic
length and time scales. Provided L » Aand & > 1, we can introduce macro-
scopic infinitesimals |dr| and dr of length and time that are large on a micro-
scopic scale but small on a macroscopic scale. Then, save in exceptional
regions, macrosopic properties like v and u will be smooth functions of the
position vector r and of the time variable ¢, changing by small increments
Idv| and du over |dr| and dt¢.

The study of the spatial and time fields of macroscopic variables like
u(r, t) is termed ‘continuum mechanics’ if [dr] > 2, d¢ > t, for in this case the
particulate nature of matter is completely submerged and, further, the scale
lengths are such that particle behaviour is aptly described as being ‘collision-
dominated’. This has the consequence that many physical effects—like,
for example, the mechanical stress—are transmitted locally, and so can be
described by differential equations. As the average distance between particles
(=10~7 cm for air at STP) is considerably less than 4, smooth functions
u(r, t) can be defined for |dr] and dt much less than 4 and 7. Under these cir-
cumstances the pamclcs are ‘collision-free’, physical effects are transmitted
on a global scale, and a more detailed description of the behaviour of the
macroscopic fields is necessary. This is the province of ‘kinetic theory’, which
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will be discussed in a later chapter. In both kinetic theory and continuum
mechanics the dependent variables are macroscopic and the independent
variables include r and ¢. Equilibrium thermodynamics is also concerned with
macroscopic variables, its principal results being relationships between
certain of the variables occurring in the field theories ; such relationships are
independent of r and ¢, which may, however, play parametric roles.

1.2. Equilibrium on the observer’s length and time scales

An omniprescent observer could specify the macroscopic state of a physical
system P, say, at a given time ¢, by giving all the macroscopic properties of P,
both physical and chemical, as functions of r. A human observer must be
content with a greatly reduced set of macroscopic variables, and the problem
of defining a thermodynamic system lies in how to specify this set, say
{xy,x,,..},for a given system P and a given observer Q. The observer's time
and length scales, say J and %, are the most important elements in the
problem. These scales, which depend on the observer’s objectives and
knowledge, must be compared with the variety of time and length scales
occurring naturally in P, due either to purely internal changes or to interac-
tions between P and its environment. For example, if the variable x, has a
maximum gradient x,, the length L = x,/x, occurs naturally in P and it is
reasonable to assume that over a length %, where & « L, it is permissible for
Q to ignore gradients in x,, that is, to take x, as uniform in P. The variables
in equilibrium thermodynamics are always assumed to be uniform; de-
partures from uniformity lie within the ambit of ‘process thermodynamics’
to be described in Part I1.

Similarly, a further reduction in the set { x,} defining the state of P results if
‘temporal equilibrium’ may be assumed by Q for some of the variables.
The role of the time variable in thermodynamics is particularly important,
although not easily explained at the beginning of the subject ; the following
description is amplified in a later section (§ 19.1). There are two quite distinct
. kinds of temporal equilibrium in thermodynamics. To explain these we shall
introduce the natural time scales '

7, = (x{9—-x,)/x%, (r=12,.) (1.1)

where x;* denotes the value x, would attain as t/1, — 0. Now order the time
scales so that 1, > 1, 2 ;.. and suppose that Q’s time scale J satisfies

T > T > 1., (1.2)

where 1,, is the least scale and 1,,,, is the greatest scale that will satisfy the
gross inequalities in (1.2).+ On Qs time scale the variables x,.r = 1,2,"..
m— 1, are said to be in ‘frozen’ equilibrium, and Q observes them to be

t Itis impossible to give such inequalities precision out of physical coatext: the reader should
think in terms of factors of 10? or more.
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constants in P. On the other hand, Q observes that the variables x,, r > m+n,
can change so rapidly that they never deviate measureably from their
equilibrium values x?%; such variables are in ‘relaxed’ equilibrium. Stability
requires that x;® depend only on the variables x,,s < r, that change more
slowly than x,. Thus for the system (P, Q) (P observed by Q), the relevant
thermodynamic variables are the set {x,}, m < r < m+n, which change more
or less on Q’s time scale.

1.3. Thermodynamic systems

The time scale 7 is not the only observer-dependent element in thermo-
dynamics: two observers may have the same .7 but different views on what is
important in P. For example, Q, may hypothesise that the ionization level
¥ 1s an important variable in a strong shock wave and thus include y as
a thermodynamic variable, whereas Q, may consider y unimportant. And _
with different objectives they could both be correct. Such subjective aspects
are, of course, present in all idealized models of real physical systems and can
never be completely-removed.

The system (P, Q)is called a thermodynamic system and {x,!,m<r<m+n,
are its thermodynamic _variables. The principal objective of classical thermo-
dynamics is to establish felationships involving just these variables and their
derivatives. A subset of these variables, termed thermodynamic coordinates.
serves to define a state-space, and the remaining variables are then functions
of state. The coordinates may be chosen in a variety of ways, and it is clearly
convenient to include among them any of the x, known to be constant (on
Q’s time scale). Those (tl{ermodynamic) variables that are already familiar
from mechanics and electromagnetism like pressure p, volume ¥, mass M,
magnetic flux B, and electric field E are accepted as primitive concepts, and
the derivation of additional variables, entirely thermodynamic in origin, is
the first task in the development of thermodynamics.

To derive new thermal variables it is necessary to assign some physical
properties to the thermodynamic system, distinct from those just mentioned.
There are several ways of going about this. all equally valid but with distinct
metaphysics. The usual textbook treatment is to introduce the additional
physical properties implicitly via the so-called ‘laws’ of thermodynamics, and
withthe aid of ‘walls’ thatseparate the system from its immediate surroundin £s
and that limit in various ways the nature of the exchanges between them. In
this axiomatic approach, of which there are several variants, the thermal
variables are defined in terms of the non-thermal ones, so that their intrinsic
physical significance is not clarified. This is possible because on a long time
scale the state may be defined by coordinates chosen from the list of variables
accepted as primitive or non-thermal. For example, the simplest thermo-
dynamic system is a gas of a single chemical constituent in a container, and
on a long time scale its state coordinates may be taken to be its pressure p
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and volume V (in what follows such a system will be termed a ‘simple’ gas
system). Alternatively we can accept the atomic nature of matter and directly
attribute macroscopic thermal variables to the system, such as the internal
energy u defined above, with a consequent reduction in the ‘las’ required.
In the prevailing philosophy of continuum mechanics it is usual to eschew
deductions from a knowledge of the existence of atoms, and this fashion will
be followed for the present.

2. The empirical temperature

2.1. Adiabatic walls

‘Temperature’ is the most important of the entirely thermodynamic
properties. To define it we first need to introduce the concept of a ‘wall’
C that separates a system P from its surroundings P*. At one extreme C need
have no physical properties at all, save that of merely defining the extent of
P; at the opposite end of the scale C may isolate P completely from P*, by
which is meant that there are no changes possible in P* able to affect the
state of P, and vice versa. Such isolation is an idealized concept for it is a
well-established principle that no part of the universe can be completely
isolated from the rest of the (visible) universe. However if the observer's time
scale 7 is very small compared with the transit times of various phenomena
through C, we may assert that P is effectively isolated from the effects of such
phenomena. Clearly & must be sufficiently small for C to appear to Q as
being impermeable, rigid, and of infinite electrical conductivity (to exclude
electromagnetic fields). These properties will exclude mass and work trans-
fers across (C, Q) (wall C observed on Qs time scale), but experimentally it is
found that they are insufficient to isolate P completely. In addition, C must
possess a special thermal property that cannot be defined in terms of primitive
concepts. This property is called adiabaticity and is found to be imperfectly
present in varying degrees as the chemical compasition and physical structure
of C is changed.

Suppose (C, Q) isolates P from mass and work transfers, and let 1, be the
least time for a measurable change to occur in the state of P after all possible
changes in P*.+ Then (C, Q) is characterized as follows:}

if T « 1, (C, Q) is adiabatic;
if T » 1, (C, Q) is diathermic. -

t Of course the important change we have in mind here is the placing of a heat source in
contact with C, but the concept of heat follows later from the first law of thermodynamics,
hence our circumlocution.

] Similar inequalities may be adopted to define ‘open’ and ‘closed’ systems

F «tg, (C.Q}is closed: F » tg, (C.Q)is open.

where 7, is a mass diffusion time. Consideration of open systems will be deferred to § 14.
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An impermeable wall that possesses adiabaticity, but which may be flexible,
may admit electromagnetic fields and currents to P, and could allow mechani-
cal devices to stir the medium of P, will be called an adiabatic wall. Armed
with the concept of adiabatic walls, we can now introduce temperature;
in the sequel the role of the observer will be supposed undeistood and
omitted from the account.

2.2. Thermal equilibrium

Consider two adjacent systems, P, in state X, defined by m, coordmates
and P, in a state X, defined by m, coordmates isolated from their sur-
roundings but not necessarily from each other. If P, and P, are isolated from
each other, the state of the composite system (X, X ,) will require (m, +m,)
coordinates to define it, whereas, if P, and P, are in some form of contact,
fewer than (m, +m,) coordinates will be required to define (X,, X,). This
contact will permit an exchange between P, and P,. For example, if P, and P,
are two simple gas systems, X, = (p,, V), X, = (p,, V3), and if they are
separated by a perfectly flexible membrane, p, will equal p, and the composite
system is completely defined by (p,.V,, V,). Should p, not equal p, the
membrane will move to make the pressures equal and P, will do work on P,
or vice versa.

Again, if P, and P, are first isolated from one another by a rigid adiabatic
wall, then (X,, X ;) = (p,, ¥,,p,, V,); if this partition is now replaced by a
diathermic wall it is found that P, and P, move to new equilibrium states in
which any three of p,, V{, p,, V, are sufficient to define the composite state.
Hence there must exist a definite relationship

F(Pp V[spz, Vz)=0, (21)

and P, and P, are said to be in thermal equilibrium with each other. Similarly,
in the general composite state space of (m, +m,) coordinates, the thermal
equilibrium states will lie on a (m, +m, — 1) surface.

2.3. Zeroth law and empirical temperature

The first of the four fundamental laws of thermodynamics, called the
‘zeroth law’ (being discovered last), states

0. Two systems in thermal equilibrium wzth a thifd are in thermal equi-

librium with each other.

Actual thermal contact via a diathermic partition is not necessary here ; we
mean rather that if such contact were established, there would be no change
of state for the two systems involved. It is sufficient to consider three simple
systems P,, P,, and P,. Let P, be in thermal equilibrium with each of P,
and P,, then functional relations

Fis(py.Vi,P3.Vy) =0 and Fi5(p;s V2.5, V5) =0 (22)



