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PREFACE

The modern theory of optimal control has its
beginnings in the pioneering work of men such as
Hohmann in Europe and Goddard in the United States.
These men, and others like them, dreamt of the day when
space travel would become a reality. It is the work of
these pioneers which has helped to bring their dreams
to partial fulfillment in such a brief period of time.
The optimization problems of space flight dynamics such
as minimum fuel and minimuﬁ time were quickly realized
to Be problems in the calculus of variations. It was
thus that this very old and established branch of
Mathematics received yet another new lease of life, a
pattern which has been-repeated since its birth in the
seventeenth century. .

Problems of high performance aircraft became
important near the end of the Second World War. Maximum
range of aircraft for a given quantity of fuel and
minimum time to climb were typical optimization problems
which arose. These too were clearly problems belonging
to the same class as those from space dynamics although
complicated by the presence of aerodynamic 1lift and drag.

Much of the mathematical theory for such problems
had already been developed early in the twentieth
century by Professor G. A. Bliss and his students at
the University of Chicago. In particular, the optimiza-
tion of aircraft and space vehicle flight paths for

which the controls are finite and bounded was analysed
\
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by a technique described in a dissertation by F. A.
Valentine, a research student of Bliss, in 1937,
However, in 1959 L. S. Pontryagin presented his
Maximum Principle which consolidated the theory for
constrained problems.

Nevertheless, it soon became apparent that the
mathematical theory available was not sufficient for
certain special control problems in which the Pontryagin
Principle yielded no additional information on the
stationary control. These problems were described as
singular problems and they have arisen in many engineer-
ing applications in fields other than Aerospace and
also more recently in non-engineering areas such as
Economics. In the last ten to twelve years much effort
has been put into the development of neﬁ theory to deal
with these singular problems. First, new necessary
conditions were found for singular extremals to be
candidate optimal arcs. Secondly, and more recently,
new sufficient conditions and necessary and sufficient
conditions have been found for such extremals to be
optimal,

We feel that the time is now right for the theory
of singular problems to be collected together, scattered
as it is in numerous different journals, and presented
under one cover. This is the purpose of the present
volume. We are particularly pleased that this book
should take its place alongside so many well-acclaimed

texts in Richard Bellman's series which has proved its
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worth many times over. Our gratitude goes to all our
colleagues and students, past and present, who have
stimulated us both in our own researches. In particular,
we would like to mention Y. C. Ho, D. Q. Mayne, J. L.
Speyer, W. Vandervelde, D. F. Lawden, R. N. A, .Plimmer
and B. S. Goh, 'Finally, we acknowledge the help and
encouragement received from Academic Press during the
preparation of this book and our special thanks go to
Mrs. G. M. McEwen and Mrs. M. E. Hughes who typed the

manuscript.

D. J. BELL
June 1975 D. H. JACOBSON
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CHAPTER 1
An Historical Survey of Singular Control Problems

1.1 Introduction

It is well known that the fundamental problem of
optimal control theory can be formulated as a problem
of Bolza, Mayer or Lagrange. These three formulations
are quite equivalent to one another (Bliss, 1946). We
shall describe the Bolza problem since the accessory
minimum problem, and the associated second variation
with which we shall be much concerned in this book,
appears as such a problem.

The problem of Bolza in optimal control theory
is the following. Determine the control function
u(*) which minimizes the cost functional

Eg

J = F[x(tf), tf] + I L(x,u,t)dt (1.1.1)

to

where the system equation is

x = f(x,u,t) (1.1.2)
subject to the constraints

x(ty) = x4 (1.1.3)

w[x(tf), tf] =0 (1.1.4)



2 SINGULAR OPTIMAL CONTROL PROBLEMS
u(*) is a member of the set U, t a member

of [t , tl. (1.1.5)

f
Here X is an n-dimensional state vector and u is an
mdimensional control vector. The functions L and F
are scalar and the terminal constraint function ¥ is
an s-dimensional column vector function of x(tf) at
t.. The functions L, F and y are assumed smooth. The

f
set ~ 1s defined by

U = {u(*) : ui(') is piecewise continuous in time,
luj ()] < =, to 2t 2 thy
i=1,2, ... , m}. (1.1.6)

The initial time t is given explicitly but the final

time t; may be unspecified.

The Hamiltonian for this problem is
H(x,u,A,t) = L(x,u,t) + A £(x,u,t) (1.1.7)

and the following necessary conditions (Pontryagin's

principle) hold along an optimal trajectory:

- = H_(%,U,7,t) (1.1.8)
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Mep = F [R(e), t ]+ Ty (1.1.9)
H(tp) = - F[%(e), t,] - thv (1.1.10)
where
U = arg min H(X,u,),t) (1.1.11)
u

u(+) a member of U.

Here';(-),'ﬁ(-) denote the candidate state and control
functions respectively, A(:) denotes an n-dimensional
vector of Lagrange multiplier functions of time, and
v is an s-dimensional vector of Lagrange multipliers
associated with y.

A singular minimizing arc for the problem of
Bolza is defined by Bliss (1946) as one for which the
Legendre-Clebsch necessary condition is not satisfied
with strict inequality. For the optimal control
problem as formulated above the definition of Bliss
is equivalent to the following. An extremal arc of
the control problem is said to be singular if the
m X m determinant det(Huu) vanishes at any point
along it. Otherwise it is said to be nonsingular.

In particular, if the Hamiltonian H is linear in one
or more elements of the control function then the

extremal is singular (Goh, 1966b).
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The following definitions are used in the sequel:

Definition 1.1 Let U be an optimal singular element

of the control vector u on the interval [tl’ t2] which
appears linearly in the Hamiltonian. Let the 2q th

time derivative of H,,, be the lowest order total

u
derivative in which ui appears explicitly with a
coefficient which is not identically zero on [tl’ tz].
Then the integer q is called the order of the singular
arc. The control variaple u is referred to as a
singular control.

Definition 1.2 Assuming all the elements uj,up,...,up

of the control vector u are singular simultaneously
then u is called a totally singular control function

when
Hu(E,x,t) =0 (1.1.12)

1.

for all t in [to, te

Definition 1.3 A partially singular control function

is one along which (1.1.12) holds for k subintervals

of length T;, 1 =1, 2, ... , k and where

[Maerkn

T; < tg - £ (Jacobson, 1970b).

i=1

The concepts of total and partial singularity can
be applied also to the accessory minimum problem in
which the second variation of the cost functional

(1.1.1) is to be minimized (see Sections 4.4 and 6.1).
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In the important subclass of optimal control problems
known as relaxed variational problems discussed by
Steinberg (1971) some of the elements of the control
vector u appear linearly and others appear nonlinearly.

In this book we shall be mainly concerned with
problems which are totally singular for all
t in [to, tf] (but see Section 5.4). In the partially
singular case the nonsingular controls that are
present can be eliminated via well-developed non-
singular theory, leaving a problem totally singular in
the remaining control variables (Robbins, 1967). The
singular control theory to be discussed has been
developed for and motivated by engineering problems.
Nevertheless, singular problems may arise in any
discipline where control theory is applied, evidence
for which can be seen in economics (Dobell and Ho,
1967) and production from natural resources (Goh,
1969/70). In the following chapters necessary and
sufficient conditiﬁns will be developed for singular
optimal control of systems governed by ordinary
differential equations. However, investigation is
being carried out into singular control of discrete
time systems (Tarn et al.,, 1971; Graham and D'Souza,
1970) and of systems with delay (Soliman and Ray,
1972; Connor, 1974).
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1.2 Singular Control in Space Navigation

Practical problems involving singular controls
arose early in the study of optimal trajectories for
space manoeuvres. Trajectories for rocket propelled
vehicles in which the thrust magnitude is bounded
exhibit singularity in the rate of fuel consumption.
Lawden (1963) formulates the fundamental problem of
space navigation in the following way. Ox;X,X; is an
inertial frame in which a space vehicle has position
coordinates (x,, X,, X3) and velocity components
(Vs vy, v3) at time t. The rocket thrust has direc-
tion cosines (£,, %,, %;) and the gravitational field
has components (gl, 8 33)' The mass rate of
propellant consumption, bounded above by some finite
constant m, is denoted by m. If the rocket has an
exhaust velocity ¢ and the mass of the vehicle is M

then its equations of motion are

Gi = cmli/M + gi(xl, Xy, X3, t) (1.2.1)
k= v, i=1, 2,3 (1.2.2)
M=-m (1.2.3)

The propellant consumption rate m must satisfy the

inequality constraints

O<m<m (1.2.4)
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whilst the direction cosines may be written in the form

L, = sinb cos¢, L, = sin® sing, L5 = cosb (1.2.5)
where 0,¢ are spherical polar coordinates. It is
required to choose the control variables m(.), 6(.),
¢(+) in order to minimize the fuel used in transfer?
ring the vehicle between two given positions at each
of which the vehicle's velocity is specified. The
final time t. may or may not be given explicitly.
State variables xi(-),-vi(-), M(:) must satisfy

boundary conditions

xi(to) =X, vi(to) = Vi M(to) =M (1.2.6)
xi(tf) = X6 Vi(tf) = Ve (1.2.7)

and the cost functional can be written as
| J=- M(tf). (1.2.8)

In this problem the Hamiltonian is linear in the rate
of fuel consumption and this control variable turns
out to be a singular control.

During the 1950's it was not known whether a given
manoeuvre in space using a small, continuous thrust
would be more economical in fuel than the previously

accepted optimal procedure of impulsive boosts (Hohmann
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transfers). Some numerical results (Forbes, 1950)
suggested that in certain circumstances less fuel
would be used in an orbital transfer by following a
spiral path using a small but continuous thrust
throughout the maneouvre than by a Hohmann transfer.
Other analysis (Lawden, 1950, 1952) appeared to show
that the so-called intermediate-thrust arcs (along
which the fuel expenditure rate is non—-zero but less
than m) were inadmissible in a fuel optimal trajectory.
The true status of the intermediate-thrust arcs
remained hidden until the mathematical theory had been
further developed (see Section 1.5.1 and Chapter 3).
Much of the early work in aerospace has been surveyed
elsewhere (Bell, 1968).

1.3 Method of Miele via Green's Theorem

A method which deals successfully with problems
involving singular controls is due to Miele (1950-51).
It is based upon a transformation using Green's
theorem relating line and surface integrals. As
developed by Miele the method is applicable only to a
particular class of linear problems in two dimensions.
The problems are linear in the sense that the cost
functional and any isoperimetric constraint are
linear in the derivative of the dependent variable.
The general cost functional in this class of problems

can be written as



