Chandermani Arora, Kevin Hennessy =&

Angular 23E )
(2ZENAR)

Angular 2 by Example -

- Packt>



Angular 2 SE4I| (2 ENAk)
Angular 2 by Example

Chandermani Arora, Kevin Hennessy &

BR FKEKXFHRT



BB ERR S B (CIP) & 1E

Angular 2 SE 1. 35 3C/CED) 8 8 3 2 - B % dir
(Chandermani Arora). (3£) 2l 3C - I JE # (Kevin Hen-
nessy)#& . — R ENAS. —g 51 AR OK S R AL, 2017.10

5 2 J/ 3C : Angular 2 by Example

ISBN 978 —7- 564173593

I.QA [I.0%:- Ol . O#IAlIE
IEE - BFRIT-% N. @OTP312.8

vh [ R A P 4 CTP 048 4 7 (2017) %5 193635 &
K %:10-2017-117 B

© 2016 by PACKT Publishing Ltd

Reprint of the English Edition, jointly published by PACKT Publishing Ltd and Southeast University Press, 2017.
Authorized reprint of the original English edition, 2017 PACKT Publishing Ltd, the owner of all rights to
publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.
& /& ) PACKT Publishing Ltd # & 2016,

KLHA b R K hIRA B R 2017, b 6P 69 th Ao 48 B 78 3] MR AR A 4 B AL K9 BT A
—— PACKT Publishing Ltd &7 ,

WA A R AT H @ T A B Fo 2R R AT H X EH,

Angular 2 5Z ) G¥ Ef i)

HRRRAT : AR mE KA R

o bk EEUMEE 2SS WE4E 210096
O A T

] Ht: http//www seupress.com
LR 4 : press@ seupress.com

s EOM TS S BRI R A
: 787 ZEK X 980 Z K 16 I 4
: 32

: 627 TF

: 2017 4F 10 A% 1

: 2017 4F 10 A 55 1 IKELI

: ISBN 978 -7 - 5641 -7359-3

: 96.00 JC

MEEFNITHD
SEFFFERHNE

A P A5 2 A B e B )R B S AR . RIS (S D)« 025 - 83791830



Authors
Chandermani Arora
Kevin Hennessy

Reviewer
Josh Kurz

Commissioning Editor
Sarah Crofton

Acquisition Editor
Kirk D'Costa

Content Development Editor
Samantha Gonsalves

Technical Editor
Madhunikita Sunil Chindarkar

Credits

Copy Editor
Safis Editing

Project Coordinator
Devanshi Doshi

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Graphics
Kirk D'Penha

Production Coordinator
Shantanu N. Zagade



About the Authors

Chandermani Arora is a software craftsman, with a passion for technology and expertise on
the web stack.

With more than a decade of experience under his belt, he has architected, designed, and
developed solutions of all shapes and sizes on the Microsoft platform.

He has been building apps on Angular 1 from its early days. Such is his love for the
framework that every engagement that he is a part of has an Angular footprint.

Being an early adopter of the Angular 2 framework, he tries to support the platform in
every possible way - be it writing blog posts on various Angular topics or helping his
tellow developers on StackOverflow, where he is often seen answering questions on the
Angular2 channel.

An ex-MSFT, he now works for Technovert where he leads a bunch of awesome developers
who build cloud-scale web applications using Angular and other new age frameworks.

He is also the author for the first edition of this book, Angular|S by Example.

Writing this book has just been a surreal experience, and 1 would like to thank my
Technovert family who have supported me in all possible ways, be it helping me with the
sample apps, reviewing the content, or offloading some of my professional commitment to
make sure I get enough time for book writing. And finally I want to express my gratitude
towards my family. I know your blessings are always there with me.

Kevin Hennessy is a Senior Software Engineer with Applied Information Sciences. He has
18 years of experience as a developer, team lead, and solutions architect, working on web-
based projects, primarily using the Microsoft technology stack. Over the last several years,
he has presented and written about single-page applications and JavaScript frameworks,
including Knockout, Meteor, and Angular 2. Most recently, he spoke about Angular 2 at the
All Things Open Conference. His corporate blog is http://blog.appliedis.com/?s=Kevin
+Hennessy.

I would like to acknowledge my wife, Mary Gene Hennessy. Her unstinting love and
support (and editorial suggestions) through the period of late nights and weekends I spent
writing this book, have made me ever more aware and appreciative of how truly amazing it
is to be married to her.



About the Reviewer

Josh Kurz is a Technical Architect at Turner Broadcasting System. He has written a book on

Angular]S, called Mastering Angular]S Directives, and he has contributed to many open
source projects.

I'would like to thank my baby girl Evelyn for being the sweetest girl in the world.



www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub. com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub. com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

Mapt

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?

e Fully searchable across every book published by Packt
¢ Copy and paste, print, and bookmark content
® On demand and accessible via a web browser



Table of Contents

Preface 1
Chapter 1: Getting Started 9
Angular basics 10
The component pattern 10
Using the component pattern in web applications 1
Why weren't components used before in Angular? 11
What's new that enables Angular to use this pattern? 12
Web Components 12

Angular and Web Components 13
Language support in Angular 13

ES2015 14

TypeScript 15

Putting it all together 16
Angular modules 16
The basic steps to building Angular applications 17
The customary Hello Angular app — Guess the Number! 17
Setting up a development server 18
Building Guess the Number! 19
Designing our first component 19
The host file 20

An HTML page 20

Script tags 21

Custom elements 22

The component file 22
The import statement 22
Decorators 23
Defining the class 24

The module file 26
Bootstrapping 27
We're up-and-running! 28
Digging deeper 28
Interpolation 29
Tracking changes in the number of tries 30
Expressions 30
The safe navigation operator 31

Data binding 32
Property binding 32



Event binding 32
Structural directives 33
Revisiting our app 34
Looking at how our code handles updates 35
Maintaining the state 36
Component as the container for the state 36
Change detection 37
Initializing the app 39
Loading the modules needed by our application 39
Bootstrapping our app 42
Tools 43
Resources 44
Summary 45
Chapter 2: Building Our First App - 7 Minute Workout 47
What is 7 Minute Workout? 48
Downloading the code base 49
Setting up the build 50
The build internals 52
Code transpiling 52
Organizing code 54
The 7 Minute Workout model 55
App bootstrapping 58
App loading with SystemJS 59
Our first component — WorkoutRunnerComponent 60
Component life cycle hooks 65
Building the 7 Minute Workout view 69
The Angular 2 binding infrastructure 72
Interpolations 73
Property binding 73
Property versus attribute 74
Property binding continued... 75

Quick expression evaluation 77
Side-effect-free binding expressions 77

Angular directives 78

Target selection for binding 79
Attribute binding 80
Style and class binding 81
Attribute directives 82
Styling HTML with ngClass and ngStyle 82
Exploring Angular modules 84

[iil]



Comprehending Angular modules 84

Adding a new module to 7 Minute Workout 86
Learning more about an exercise 88
Adding descriptions and video panels 88
Providing component inputs 89
Structural directives 93

The ever-so-useful NgFor 94

NgFor performance 95

Angular 2 security 96

Trusting safe content 98
Formatting exercise steps with innerHTML binding 99
Displaying the remaining workout duration using pipes 100
Angular pipes 100
Implementing a custom pipe — SecondsToTimePipe 102
Adding the next exercise indicator using nglf 105
Pausing an exercise 107
The Angular event binding infrastructure 110
Event bubbling 111

Event binding an $event object 111
Two-way binding with ngModel 112
Summary 113
Chapter 3: More Angular 2 — SPA, Routing, and Data Flows in Depth 115
Exploring Single Page Application capabilities 116
The Angular SPA infrastructure 117
Angular routing 117

Angular router 119

Routing setup 120
Pushstate API and server-side url-rewrites 121

Adding start and finish pages 122
Route configuration 123
Rendering component views with router-outlet 124

Route navigation 125

Link parameter array 127

Using the router service for component navigation 127

Using the ActivatedRoute service to access route params 129
Angular dependency injection 130
Dependency injection 101 130
Exploring dependency injection in Angular 132
Tracking workout history 133
Building the WorkoutHistoryTracker service 134
Integrating with WorkoutRunnerComponent 136
Registering dependencies 136

[iii]



Angular providers 137

Value providers 137

Factory providers 138

Injecting dependencies 139
Constructor injection 139

Explicit injection using injector 140
Dependency tokens 140
String token 141
Integrating with WorkoutRunnerComponent — continued 142
Adding the workout history page 143
Sorting and filtering history data using pipes 145
The orderBy pipe 145

The search pipe 147
Pipe gotcha with arrays 148
Angular change detection overview 150
Hierarchical injectors 152
Registering component level dependencies 152
Angular DI dependency walk 155
Dependency injection with @Injectable 157
Tracking route changes using the router service 159
Fixing the video playback experience 160
Using thumbnails for video 161
Using the angular2-modal dialog library 161
Creating custom dialogs with angular2-modal 163
Cross-component communication using Angular events 165
Tracking exercise progress with audio 165
Building Angular directives to wrap HTML audio 166
Creating WorkoutAudioComponent for audio support 168
Understanding template reference variables 172
Template variable assignment 173
Using the @ViewChild decorator 173

The @ViewChildren decorator 174
Integrating WorkoutAudioComponent 175
Exposing WorkoutRunnerComponent events 176

The @Output decorator 177
Eventing with EventEmitter 178
Raising events from WorkoutRunnerComponent 179
Component communication patterns 180
Injecting a parent component into a child component 181
Using component lifecycle events 183

Sibling component interaction using events and template variables 184
Summary 187
Chapter 4: Personal Trainer 189

[iv]



The Personal Trainer app — the problem scope

Personal Trainer requirements

The Personal Trainer model

Sharing the workout model

The model as a service

The Personal Trainer layout

Personal Trainer navigation with routes
Getting started
Introducing child routes to Workout Builder
Adding the child routing component
Updating the WorkoutBuilder component
Updating the Workout Builder module
Updating app.routes
Putting it all together
Lazy loading of routes

Integrating sub- and side-level navigation
Sub-level navigation
Side navigation

Implementing workout and exercise lists
WorkoutService as a workout and exercise repository
Workout and exercise list components

Workout and exercise list views
Workouts list views
Exercises list views

Building a workout
Finishing left nav
Adding WorkoutBuilderService
Adding exercises using ExerciseNav
Implementing the Workout component
Route parameters
Route guards
Implementing the CanActivate route guard
Implementing the Workout component continued...
Implementing the Workout template
Angular forms
Template-driven and model-driven forms
Template-driven forms

Getting started
Using NgForm
ngModel
Using ngModel with input and textarea

190
191
191
192
193
193
194
195
198
199
201
202
203
203
205

211
211
212

214
214
217

218
218
221

222
223
224
226
227
227

228
229

231
232
233
234
234

234
235
236
237

[v]



Using ngModel with select 239
Angular validation 240
ngModel 240

The Angular model state 241

Angular CSS classes 241
Workout validation 243

Displaying appropriate validation messages 243

Adding more validation 244

Managing multiple validation messages 245

Custom validation messages for an exercise 246
Saving the workout 247

More on NgForm 249

Fixing the saving of forms and validation messages 250
Model-driven forms 252

Getting started with model-driven forms 253

Using the FormBuilder API 255

Adding the form model to our HTML view 257

Adding form controls to our form inputs 257

Adding validation 258

Adding dynamic form controls 259

Saving the form 260

Custom validators 261

Integrating a custom validator into our forms 262

Summary 263
Chapter 5: Supporting Server Data Persistence 265
Angular and server interactions 266
Setting up the persistence store 266

Seeding the database 268

The basics of the HTTP module 269
Personal Trainer and server integration 270
Loading exercise and workout data 270

Loading exercise and workout lists from a server 271

Adding the HTTP module and RxJS to our project 272

Updating workout-service to use the HTTP module and RxJS 272

Modifying getWorkouts() to use the HTTP module 274
Updating the workout/exercise list pages 275
Mapping server data to application models 276
Loading exercise and workout data from the server 279
Fixing the builder services 281
Fixing the Workout and Exercise components 282

Updating the router guards 283
Performing CRUD on exercises/workouts 284
Creating a new workout 285

[vi]



Updating a workout 286
Deleting a workout 287
Fixing the upstream code 287
Using promises for HTTP requests 289
The async pipe 291
Cross-domain access and Angular 292
Using JSONP to make cross-domain requests 292
Cross-origin resource sharing 296
Handling workouts not found 297
Fixing the 7 Minute Workout app 299
Summary 300
Chapter 6: Angular 2 Directives in Depth 301
Classifying directives 302
Components 302
Attribute directives 302
Structural directives 303
Building a remote validator directive 303
Validating workout names using async validator 305
Building a busy indicator directive 310
Injecting optional dependencies with the @Optional decorator 312
Implementation 1 — using renderer 313
Angular renderer, the translation layer 316
Host binding in directives 317
Property binding using @HostBinding 317
Attribute binding 318

Event binding 319
Implementation 2 — BusylndicatorDirective with host bindings 319
Directive injection 321
Injecting directives defined on the same element 322
Injecting directive dependency from the parent 322
Injecting a child directive (or directives) 323
Injecting descendant directive(s) 324
Building an Ajax button component 324
Transcluding external components/elements into a component 328
Content children and view children 328

Injecting view children using @ViewChild and @ViewChildren 331
Tracking injected dependencies with QueryList 332
Injecting content children using @ContentChild and @ContentChildren 333
Dependency injection using viewProvider 334
Understanding structural directives 338

[ vii ]



TemplateRef 339
ViewContainerRef 340
Component styling and view encapsulation 341
Overview of Shadow DOM 342
Shadow DOM and Angular components 344
Summary 348
Chapter 7: Testing Personal Trainer 349
The need for automation 350
Testing in Angular 350
Types of testing 351
Testing — who does it and when? 351
The Angular testing ecosystem 352
Getting started with unit testing 353
Setting up Karma for unit testing 354
The Karma configuration files 355

The Karma test shim file 357
Organization and naming of our test files 359
Unit-testing Angular applications 360
Unit-testing pipes 360

Running our test files 362
Unit-testing components 364
Angular testing utilities 364
Managing dependencies in our tests 365
Unit-testing WorkoutRunnerComponent 365
Setting up component dependencies 366

Mocking dependencies — workout history tracker 366

Mocking dependencies — workout service 367

Mocking dependencies — router 368
Configuring our test using TestBed 368
Starting unit testing 371
Debugging unit tests in Karma 371
Unit-testing WorkoutRunner continued... 373
Using Jasmine spies to verify method invocations 374

Using Jasmine spies to verify dependencies 375

Testing event emitters 376

Testing interval and timeout implementations 377

Testing workout pause and resume 378
Unit-testing services 379
Mocking HTTP request/response with MockBackend 379
Unit-testing directives 383
The TestBed class 384

Testing remote validator 384

[ viii |



Getting started with E2E testing 387
Introducting Protractor 388
Setting up Protractor for E2E testing 390
TypeScript configuration 391
Writing E2E tests for the app 392
Executing our E2E tests 393
Setting up backend data for E2E testing 395
More E2E tests 395

Testing WorkoutRunner 397

Using page objects to manage E2E testing 397

Summary 400
Chapter 8: Some Practical Scenarios 401

Building a new app 402

Seed projects 402

Seed and scaffolding tools 403
Yeoman 403
angular-cli 404

Angular 2 performance 405
Byte size 405
Initial load time and memory utilization 406
The Angular rendering engine 407
Server-side rendering 408
Offloading work to a web worker 408
Performant mobile experience 410
Change detection improvements 411

Change detection 411
Change detection setup 412
When does change detection kick in? 413
How does change detection work? 416
Change detection performance 420
Using immutable data structures 421
Using Observables 423
Manual change detection 424

Handling authentication and authorization 425
Cookie-based authentication 426
Token-based authentication 429
Handling authorization 436

Adding authorization support 436
Sharing user authentication context 437
Restricting routes 437
Conditionally rendering content based on roles 438

[ix]



Migrating Angular 1 apps 439

Should | migrate? 439
Advantages of Angular 2 440
Developing Angular 1 apps today for easy migration 441
One component per file 441
Avoiding inline anonymous functions 441
Avoiding $scope! 442
Using controller as (controller aliasing) syntax everywhere 443
Avoiding ng-controller 444

Building using the Angular 1.5+ component API 445
What to migrate? 446
Preparing for Angular 2 migration 447
Identifying third-party dependencies 447
jQuery libraries 447
Angular 1 libraries 447

Choice of language 448
Migrating Angular 1's Personal Trainer 449
Setting up Angular 1's Personal Trainer locally 449
Identifying dependencies 450
Setting up the module loader 451
Enabling TypeScript 454
Adding Angular 2 456
Bootstrapping the hybrid app 458
Injecting Angular 2 components into Angular 1 views 460
Migrating our first view to Angular 2 component 460
Injecting Angular 1 dependencies into Angular 2 462
Registering Angular 2 components as directives 463
Rules of engagement 464
Angular 1 directives and Angular 2 components 465
Resource sharing and dependency injection 466
Sharing an Angular 1 service 466

Sharing an Angular 2 service 467

Change detection 468
Migrating the start and finish pages 468
Angular 1 directive upgrade 470
Replacing angular-translate with ng2-translate 471
Using a bootstrap-ready callback for initialization 472
Integrating the start and finish pages 474
Getting rid of angular-translate 475
Replacing the ui-bootstrap library 477
Learnings 480
Summary 481
Index 483

[x]



