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Preface

The objective of this book is to describe the fundamental theory of birth-
death processes and Markov chains and to present the developments in this
field in recent years. The so-called Markov chain here refers to a Markov pro-
cess which has continuous time parameters, countably many states and is
time-homogeneous. Chains of this kind are important not only because its
comparatively complete and unified theory can be used for reference in
general Markov chains and other stochastic processes, but also because there
is a steady increase in the applications to natural sciences and practical prob-
lems such as physics, biology, chemistry, programming theory and queueing
theory. For these the reader is referred to the works by K. L. Chung, Hou
Zhen-ting, Guo Qing-feng, Bharucha-Reid, quoted at the end of this book.

Birth and death processes belong to a particular kind of the Markov
chain. Despite the abundance of relevant works and reference materials, it
seems that thus far there has been no systematic monograph available to ex-
pound them. Some outstanding scholars such as D. G. Kendall, G. E. H. Reuter
and W. Feller, especially S. Karlin and J. McGregor, have done a great deal of
thorough and important study in this field. They have, in general, resorted to
the methods of analytic mathematics. The authors regret that they have not
been able to make an extensive study of this area. However, they have solved
certain problems encountered. Probabilistic methods are mainly used in
Chapters V and VI to construct all the birth and death processes. Starting
from the investigation of the trajectory of a motion, an intuitive form is de-
rived and then paved with vigorous proofs in mathematical computation and
measure theory. The advantage of this method is that the probabilistic mean-
ing is fairly clear although the whole procedure may seem a little lengthy. In
Chapters VII and VIII all the birth-death processes and bilateral birth-death
processes are constructed mainly via analysis. 4

Chapter I is preliminary. Chapters Il and Ill deal with the analytic prop-
erties and the trajectory behaviours of Markov chains which are mainly due to
K. L. Chung, R. L. Dobrushin, J. L. Doob, W. Feller, A. N. Kolmogorov and P.
Lévy. Chapter IV discusses some special topics and Chapters V to VIII deal
with birth and death processes. These last five chapters are basically achieve-
ments of recent research made by Chinese scholars, including the authors.
For details, see Annotations on the History of the Contents of Each Section
after Appendix II.
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The authors wish to express their sincere gratitude to Professor R. L.
Dobrushin, who motivated their interest in birth and death processes. They
are also indebted to professors Wu Rong, Liu Wen and Yang Zhen-ming, for
reading over the manuscripts carefully and offering many valuable sugges-
tions, particularly to Zhang Run-chu and Zhang Shu-dong for their tremendous
work in preparing this English version.

Wang Zikun
November 1991 Yang Xiangqun
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Chapter |

General Concepts of Stochastic Processes

§1.1 Definition of Stochastic Processes

(D Probability spaces. Let Q=(w) be a space of points ¢ and § a class
of some subsets 4 of Q . § is called a g-algebra if it possesses the following
properties: ~

1) Q3.

2) If A€ §, then A=Q\A€F.

3) lf Anegy n=1,2,"" then L:)lAnE%'

A set function P defined on the g-algebra § is called a probability if P satis-
fies the following conditions:

1° P(A)=0 forevery A€3.
2° P(Q)=1.
3° If A,€F n=12,+, AnAx=9, m*n(¢p denoting the empty set), then

P(J 4= 5 P(A,).

We call the triple (Q,%,P) a probability space, a point ¢ in Q an
elementary event, Q the space of elementary events, a set A in § an event,
and P(A) the probability of A .

Example 1. Assume that Q=(1,2,*:-,n), & is the collection of all the sub-

sets of Q, and p(A)=—1l%, where f is the number of the points in A.
Example 2. Assume that Q=(0,1,2,--+), i.e., the set of all nonnegative inte-

. K
gers, § is the collection of all the subsets of Q, and P(A)= Z‘.Le"‘, where A
>( is a constant. xea k!

Example 3. Assume that Q=[0,1], i.e., the set of all numbers between 0
and 1, § refers to the g-algebra consisting of all the Borel sets of Q, and P(4)
is equal to the Lebesgue measure of 4.

All the (Q,§, P) in the above three examples are probability spaces.

~ Sometimes for convenience, we need to suppose that the probability
space (Q,§,P) is complete. By “complete” here we mean that if P(4)=0 and
BC 4, then Be § and hence P(B)=0. That is to say, each subset B contained
in the set A with probability 0 is also an event with probability 0. Unless other-
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wise stated hereafter, this condition is always assumed to be satisfied.
(I Random variables. Let x(w) be a real-valued function defined on Q.
If for each real number A, we have

(w:x(w)S A)e %9
then x(w) is called a random variable. Put
F(A=P(x<d), A€ R,=(—00,0), (1)

where (x< A) represents the set of points ( satisfying the condition x(w)<A,
namely, (r<A)=(w:x(w)<A). We call F(A) the distribution function of x(w).
Clearly, F(A) is nondecreasing and right continuous. From now on unless
otherwise stated, the probability of the event (w: x(w)= £ o) always denotes
zero, hence
Alil_n F(A)=0, limF(A)=1.

The n random variables x,(w), -, Zn(w) defined on the same probability

space (Q,%,P) form an n-dimensional random vector X(w):

X(w)=(xl(w)7'"’ xn(w))y (2)
and the function of n variables (A,,'*,A,) € R, (the n-dimensional real space)
FA, A= Plax(w)< Ay, Tnlw)< An) (3)

is called the n-dimensional distribution function of X(q). From (3), it can be
seen that F(A,,---,A,) possesses the following properties:
a. For each ), it is a nondecreasing and right continuous function.

b. lim F(A,,A)=0 (j=1,+n),

AJ—+—o0

lim F(/\l;'",/\ﬂ):l'

AlyAn—00
c. I A<u, j=1,-,n, then

F(ﬂly"'7ﬂn)_jz=lF(ﬂl9'"’#.1—1,'\19#J+19"'y#n)

ns
+JéxF(’u"."’/"J—h’\hﬂln,'",#k-n,/\k.ﬂxﬂ,"',#n)
—_——.e +(_1)'IF(AH"’,/\7|)ZO.

(The intuitive meaning of this condition is clear for n=2. In general, the
right member of the above formula represents the probability for x(w) to take
values in the cuboid of the n-dimensional space R, and hence it is greater
than or equal to zero; the cuboid is (A;,z] X (As, 2] X -+ X (An,u2nl, i.€. the set of
such points in R, that their j-th coordinates are situated in (A,,x,],j=1,-*,n).

Now we can define a distribution function without relation to random
variables. A function F(A,,:*,A)A, € Ri,j=1,---,n) of n variables with prop-
erties g, b and c, is called a distribution function of n variables. B, denotes
the g-algebra consisting of all the Borel sets of the n-dimensional space R,,
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then from measure theory we know that F(A,-:-,A,) generates a probability
measure F(A) on B,:

F(A)= f dF (A A) (A€,

F(A),(A €8, is called the n-dimensional distribution generated by F(A,, :-,A,)-
In particular, if F(A,-:+,A,) is generated by (3), then F(A) is called the dis-
tribution of x(w).

(lil) Stochastic processes. Let T be a subset of R,, for instance,
T =[0,0) or T=(0,1,2,--+). If for each t € T there corresponds a random
variable x,(w), then the collection X(w) of random variables

X(w)=lx{w),t € T}

is called a stochastic process, or simply a process. Sometimes it is written as
lx(t,w),t € T}, or {a,,t € T}, or {x(2), 2 € T}, or X(w), or X.

In particular, X is reduced to an n-dimensional random vector for
T=(1,2,--+,n). Just as we defined the distribution function for X, we can also
define finite-dimensional distribution functions of a stochastic process. For
any t,€ T, j=1,--,n, put

FB,,..‘,tn(Als'",/\ﬂ):P(th/\h'”axtnS /\n)a (4)

which is the distribution function of x,(w),:-*,2x:.(w). As n varies in all positive
integers and ¢, varies in T, the collection of distribution functions of several
variables is obtained as follows:

F={th....,tn(/\ls'",/\n)9 n=1929"'
t;€ T, j=1,,nl (5

In addition, F is called the family of finite-dimensional distribution functions
of the stochastic process X. From (4) it is easily seen that F satisfies the fol-
lowing two conditions (consistency conditions):

A. For each permutation (a,, **,a,) of (1,---,n),

Ft"""t"('\l’.“’Aﬂ)=Ftah-.-.tan(Aan'"vl\an)'
B. If m<n, then
Fitalhiy A= 1M Fi enlAiyee, A0

Am+1r-An- o

Now we are going to deal with the converse problem. In the above dis-
cussion, we first gave a stochastic process X, then a family of consistent finite-
dimensional distribution functions is obtained. Now conversely, suppose what
we give first is a parameter set T and a family (5) of finite-dimensional dis-
tribution functions satisfying the consistency conditions. The question is:
Does there exist such a stochastic process that its family of finite-dimensional
distribution functions exactly coincides with F' ? The answer is “yes”, or more
precisely, we have the following theorem.
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Theorem 1. Given a parameter set T and a family of finite-dimensional
distribution functions satisfying the consistency conditions, then there must ex-
ist a probability space (Q,¥,P) and a stochastic process X(w)=lx{w),t € T}
defined on it such that for each natural number n and arbitrary A,€ R,,
L€ Ta j=19"'1n9

Ft.,..,,tn('{h"'okn)=P(thAls"';xtnS '\n)' (6)

Proof. Let Q=R hence w=A(- ), where A(-) stands for a real-valued
function A(#),t € T defined on T, §=3B,. Here B, expresses the minimal ¢-
algebra containing all those sets in R, that have the form (A(- ):A(2)<'c) with
arbitrary t € T and ¢ € R,. From the Kolmogorov extension theorem and the
consistency assumption, it follows that F generates a unique probability mea-
sure P defined on B,, which satisfies

P LA Ay AR S A= Foy, el Ary 70 An)- (7
Put P = P.. Finally, we define

xlw)= A1), if 0=A(") (8)

In other words, x,(w) denotes a t.coordinate function, namely, the value of x.
at =A(") is equal to the value A(%) of A(-) at t. It can be easily seen that
(R;,8;,P;) and |x{w),t € T} defined by (8) satisfy the requirement (6) of the
theorem. In fact, it follows from (8) and (7) that

Py (W)= Ay rnl ) < An)
= P{A(" SA(H)=< Ala"'a'\( tn)S An)': Ft....,,:ﬁ(/\h"'o/\n)- #

(IV) Several basic concepts.

(a) A stochastic process |x(w),t € T} may be regarded as a function of
two variables (%,e) with t € T and € Q. As stated above, if { is fixed and
lxdw),t € T} is considered to be a function of «, we get a random variable
xdw) If w is fixed and {x{w),t € T} is regarded as a function of , we obtain a
function x{w) defined on T, and call it the sample function or trajectory cor-
responding to the elementary event .

(b) Let =={&(w)} be a collection of some random variables £(¢) and con-
sider the arset (w:&(w)< A). We get a collection {(£(w)< A)} of the subsets of Q
as £(q) varies in = and A in R,. The minimal ¢-algebra containing this collec-
tion of subsets is denoted by §|=| and called the o-algebra generated by =.
Therefore §ix,, t € T} is the s-algebra generated by the stochastic process
{xt(w)»t € T}-

(c) The two stochastic processes {x(w),t € T} and {&{w),t € T} defined on
the same probability space (Q,F,P) are said to be equivalent, if for each fixed
teT,

P(x{w)=&lw)=1. (9)

It follows from (9) that for finitely or denumerably many ¢,€ T, i=1,2,*,
Plxy(w)=&(w), i=1,2,-")=1. (10$)
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This shows that two stochastic processes equivalent to each other have
the same family of finite-dimensional distribution functions.

(d) A stochastic process {x,(w),t € T} (here T being an interval) is said to
be stochastically continuous at t,€ T if

P lim 2 w)=2u(w), (11)

where Plim stands for the limit in a sense of convergence in measure P. If
the process is stochastically continuous at every i, € T, then we say that it is
stochastically continuous. Replacing ¢— t, by t— {,+0 (or ¢— t,—0), we ob-
tain the definition of stochastic continuity from the right (or left).

(e) Whenever we say hereafter that almost all (or with probability one)
sample functions possess a certain property A, we mean: There exists a Q,,
P(Q,)=1 such that for each @€ Q,, the sample function x( - ,w) possesses
the property A (“-” standing for the mobile coordinate on T). For instance,
almost all sample functions with right lower semicontinuous (the property A)
mean that there exists a set Q, having the probability equal to one such that
for we Q, we have limx(s,w)=x(t,w) for each t € T. We have to distinguish

this concept from the following: almost all sample functions are right lower
semi-continuous at a fixed ¢. The latter means only

Plw:lim x(s,w)=x(1,w)=1

ST

whereas the former implies a stronger conclusion:
Pl(w:lim x(s,w)=x(t,w), for all { € T)=1.
8=

(f) If all the random variables forming a stochastic process |x,,t € T} take
on values in the same set [(C R,), we say that | is the state space of this pro-
cess and each element ; in J is related to a state. State spaces, generally
speaking, are not unique, because any set containing | is also related to a
state space. We call | the minimal state space if I is a state space and for
each { € there exists a { € T satisfying P(x,= i) > 0. The state space is al-
ways referred henceforth to the minimal one unless otherwise stated. Some-
times, a state space is called a phase space denoted by either E or |.

(V) Previously, only stochastic processes that take on real values were
discussed. If xw)=yd{w)+ izdw), {¥dw),t€ T| and {z{w),? € T} being two
real-valued stochastic processes defined on the same probability space, we
then call {x{w),t € T} a complex-valued stochastic process. The processes to
be discussed hereafter, unless otherwise stated, all pertain to real-valued
ones.
Actually, the definition of the stochastic process can be generalized as
follows: Given a probability space (Q,&,P) and another measurable space
(E,B) (E=(e) denoting a set of points ¢, B signifying a g-algebra consisting
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of some subsets of E , and E together with B being called a measurable
space), a variable x(w) defined on Q and taking on values in E is called a
random variable if (w:x(w)€ A)€F for each set 4 € B. Now let a parameter
set T be given. If for any # € T, it corresponds to a random variable x,(w) as
stated above, {x:(w),? € T} is then called a stochastic process taking on values
in (E,8). In particular, a real-valued stochastic process is obtained when
(E,B) reduces to (R,, B,) (the set of real numbers and the collection of all its
Borel sets). An n-dimensional stochastic process is obtained if (E,%B) reduces
to (R, B,)(B, is the collection of all the Borel sets of R,).

We say that a set is discrete if it contains at most denumerably many ele-
ments. There may occur the four cases below according as T and E are dis-
crete or continuous:

1° Both T and E are discrete.

2° T is discrete while E is continuous.
3° T is continuous while E is discrete.
4° Both T and E are continuous.

A stochastic process is also called a stochastic sequence for a discrete T.

§1.2 Separability of Stochastic Processes

(I) Let {¢&{w),t € T} be a stochastic process defined on (Q,§,P). Recall
that we have already made (§,P) complete. In practical problems, we often
need to discuss some ¢rsets involving a number of nondenumerable ¢. For
example, there is need for investigating the probability of

A=lw:| &w)| <A, forall te T} (1)

where A€ R,. If T is neither a denumerable nor a finite set, then, since

A=QT(l &(w) <),

the set A, as an intersection of nondenumerably many events, is generally not
an event, i.e., in general A € § and hence there is no probability of A to speak
of.

Thus a difficulty arises: on the one hand, we need in practice to investi-
gate the probability of A; on the other hand, it cannot even be ensured
theoretically that A has a probability.

Similarly, the -sets

B=/{w: the sample function x{w) is continuous on T, T =[0,),
C=|w: the sample function x{w) is a monotonic nondecreasing function
on T}
and so forth may not necessarily be events either.
One way to overcome this difficulty is to assume that the process possesses
separability (see the definition below). Making use of the separability, we can
reduce the study of a certain property A, which relates to all the para-
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meters £, to that of the corresponding property involving only a number of
denumerable parameters.

To simplify the notation, let T be an interval in R,; in fact, the conclu-
sions below hold for an arbitrary TC R,, provided some evident modifica-
tions are made.

Let x(t),t € T be an arbitrary function which may take +co as its values.
Denote by X, the two-dimensional set {(¢,x(%)),% € T} (whose graph is a plane
curve). Again let R be an arbitray denumerable subset in T, dense in T, and
write X.={(r,x(7)),r € R}, which is also a two-dimensional set. It is obvious
that X;C X,

Denote by X, the closure of X; in the usual distance”, and hence X,
consists of X, and all the limit points of X;.

Definition 1. A function x(t),t € T, is said to be separable relative to R
if X,C X5, that is, for every ¢ € T there exists a sequence |7|C R (r, may be
equal to r,) such that we have simultaneously

ri—~t, x(r)—x(l)

The R here is called a separable set of the function.

Definition 2. A stochastic process {xJ{w),t € T} is said to be separable
relative to R if there exists a null set N such that the sample function
x{w)(t € T) is separable relative to R for every w€ N. In this case, R is call-
ed a separable set of the process and N, an exceptional set.

A stochastic process is said to be separable if there exists a denumerable
subset R, which is everywhere dense in T, such that the process is separable
relative to R.

A stochastic process is said to be well-separable if it is separable relative
to an arbitrary set R as stated above.

Example 1. A continuous function is separable relative to the set R of
rational points in T, and actually it is also well-separable.

Example 2. Let s € T, s being an arbitrary irrational point, and a func-
tion x(t)=0,t € T\\s, x(s)=1. Then this function is not separable relative to
the set R of all the rational points in T; however, it is separable relative to
RUisl

Example 3. Denote by F the set of rational points. Then the following
function is inseparable relative to F:

x(t)=[ Lot tiF’

0, ifteF.
Take arbitrarily a denumerable set E of irrational points, which is
dense in R,. Then the above function is separable with respect to FUE.

1) Namely the distance between the two points P,=(x,,%) and P;=(x;,y,) is given by
d(Pan)=J(xl_xz)’+(y|—yz)z-




8 I General Concepts of Stochastic Processes

Obviously, if a process {&{w),t € T} is separable with respect to R, then
the set A in (1) and the event
A'=lw| glw) <A for all r e RI=N (&) <NeF

TER
differ at most by a null set (which is a subset of N ). Hence, owing to the
completeness of (5§, P), A is an event too.

(I Theorem 1. For any stochastic process {&{w),t € T} defined on
(Q,5,P), there must exist a separable and equivalent stochastic process
lx{w),t € T}

This theorem indicates that, although a given process {£(2),% € T} is un-
necessarily separable, there must exist a separable representative in its
equivalent processes. Therefore, for a given family of consistent finite-
dimensional distributions, by Theorem 1 in § 1.1 and Theorem 1 here, there
must exist a separable process whose family of finite-dimensional distribu-
tions coincides with the given one. In other words, so long as the treated
problem only involves a family of finite-dimensional distributions, we may
assume that the considered process is separable. Now let us first prove the
following lemma.

Lemma 1. For any two intervals J and G, JC T, there exists a sequence
{sdC J such that for each fixed t € J,

P(&€G, &,.€ G, n=1,2,--)=0. 2)

Proof. Choose |s,} by induction. Take an arbitrary point s, € J. If s,,-*",8n
have been chosen already from J, we put

Pn:stlel.lpp(fte Gy §SJ€G7".:£&!—E—G)'

Hence there must exist a point s,,, € J satisfying

(3)

Pl€ornr € Gy £€ Gy 6on € G)Z Poll =) @

These events G,=(&,., € G, 53,?6;‘-,58,,_56) (n=1,2,--+), however, are dis-
joint, thus

; P(G)<1.

Consequently, the values P,.(l—-—:?) of the right-hand side in (4) tend to zero.
This shows that

}.ilnPn':O. )

Secondly, now that for every fixed { we have
(5¢€ Gs fst?G’ i=1729'"sn)
S(&€G, £.€G, i=1,,n+1)D,
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the intersection of those events being the very event in (2). Therefore the
proof of (2) is completed by (3) and (5). %

Proof of Theorem 1. We say that two intervals J and G (JC T) with
rational numbers as their endpoints are a “duad”. All such duads form a de-
numerable set. For each duad (J,G), a sequence {s,} possessing the properties
in Lemma 1 can be obtained. When such sequences and rational numbers in
T are merged, a subset R denumerable and dense in T, is acquired. If some
new points are added to {s,}, the event in (2) will not enlarge. Therefore, R
has the following property:

For each fixed t € T and each fixed duad (J,G), satisfying e J, it is
found

P(&te Gs SS_E—G, for all S € JR):O_ (6)
Now fix ¢ and denote by A, the event that “there exists at least a duad

(J,G),t € J such that &€ G and &€ G hold for all se€ JR”. Then it follows
from (6) that

P(A)STP(&€G, &€ G, for all s€ JR)=0,

hence P(A4,)=1. Below we fix o€ A, arbitrarily and take any G such that
&(w) € G. For an arbitrary J containing ¢, by the definition of 4, there must
exist an s € JR such that &(w)€ G; otherwise, this @€ 4, Because of the
arbitrariness of J, {uJCR can be found as J lessens such that y,—{ and
each £, (w)€ G as well.

Now take G,D Gn.: such that not only &(w)€ G, but also the lengths of
G. tend to zero. As stated above, for each G,, {u7}C R can be found such that

uP—t(j—=>), £.€Gn

Choose a sequence {y,/C R as follows:
Put p,=u®,and v, is an arbitrary u} satisfying |u%’— 2| <1/n. Obvious-
ly, vp=t,&.(w)—>&{w), (n—0c0). This indicates that
(t,8{w) € Exlw)=(r,&{w)),T € R).

Since € A, is arbitrary, thus we have proved that

P((t,6(w)) € Edw)= P(A)=1 (7
for any fixed t € T.
Now construct a new process {x{w),? € T}: for any w € Q, when t € R, let

T w)= &l wh
when £ € R, let ®
xdw)=&lw), if (¢,&{w) € Exw), ' :

=84w), if (1,8(w) € Edw)
where §,(w) should be chosen in such a way that (1,0{w)) € Sx(w). Such a 0d w)
can always be found by the following method: take arbitrarily a sequence



