Konstantine Arkoudas and David Musser

Fundamental Proof Methods
iINn Computer Science

A Computer-Based Approach




Fundamental Proof Methods in Computer Science
A Computer-Based Approach

Konstantine Arkoudas and David Musser

Proof is the primary vehicle for knowledge generation in mathematics. In computer science, proof has found an additional

use: verifying that a particular system (or component, or algorithm) has certain desirable properties. This book teaches

d write proofs using Athena, a freely downloadable computer language. Athena proofs are

students how to read «
nachine-checkable and written in an intuitive natural-deduction style. The book contains more than 300 exercises, most
with full solutions. By putting proofs into practice, it demonstrates the fundamental role of logic and proof in computer

science as no other existing text does. Guided by examples and exercises, students are quickly immersed in the most useful

veral forms of induction, case analysis, proof by contradiction,

Ng equational reasoning

high-level proof methods, inclu
ind abstraction/specialization. The book includes auxiliary material on SAT and SMT solving, automated theorem proving
anad loglic programming
[he book can be used by upper undergraduate or graduate computer science students with a basic level of program
1ing and mathematical experience. Professional programmers, practitioners of formal methods, and researchers in

logic-related branches of computer science will find it a valuable reference

Konstantine Arkoudas is a Senior Research Scientist and Software Architect at Bloomberg. David Musser is Professor Emer

itus of Computer Science at Rensselaer Polytechnic Institute

I'his book serves as both an encyclopedic manual of proof tools and techniques, and as a well-written inspirational mani

0 be able to think about and work with proofs."—Peter Norvig, Director of Research,

festo explaining why it is importan

1000 !¢

ndamental Proof Methods in Computer Science is well thought out and carefully written. The text introduces formal no
tation from the outset, and employs it throughout the presentation. No other book that | know of brings with it the formal
ism necessary for mechanized logic processing. This is a significant contribution to the teaching of applications of formal

logic in problems relevant to computer science "—Rex Page, Professor Emeritus, School of Computer Science, University of

Oklahoma, coauthor of Discrete Mathematics Using a Computer

ners think rigorously about their code. While learning Athena

and going through hundreds of problems is a difficult task, it will lead not only to more correct code, but will help program

ners to decompose the code into coherent subcomponents. My professional life would have been easier if this book had

been available when | was young."—Alexander Stepanov, coauthor of Elements of Programming and From Mathematics

90000
i | NNWA
« R




Fundamental Proot Methods
:J mO_\j UCuﬁm_\ mﬁ_mjﬁm A Computer-Based Approach

Konstantine

Arkoudas

and
David
Musser




Fundamental Proof Methods in Computer Science

A Computer-Based Approach

Konstantine Arkoudas and David Musser

The MIT Press
Cambridge, Massachusetts
London, England



© 2017 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form or by any electronic or mechanical means
(including photocopying, recording, or information storage and retrieval) without permission in writing from the
publisher.

This book was typeset in IXTEX by the authors. Printed and bound in the United States of America.
Library of Congress Cataloging-in-Publication Data

Names: Arkoudas, Konstantine, author. | Musser, David R., author.
Title: Fundamental proof methods in computer science : a computer-based
approach / Konstantine Arkoudas and David Musser.
Description: Cambridge, MA : MIT Press, [2017] | Includes bibliographical
references and index.
Identifiers: LCCN 2016020047 | ISBN 9780262035538 (hardcover : alk. paper)
Subjects: LCSH: Computer science—Mathematics. | Proof theory.
Classification: LCC QA76.9.M35 A74 2017 | DDC 004.01/51—dc¢23 LC record available at
https://lcen.loc.gov/2016020047

100987654321



Fundamental Proof Methods in Computer Science



X,




Ytoug yoveic pou, Baolin xa Xpuoodia

K A.

To Martha, with love and gratitude

D. M.






Preface

Logic has been called “the calculus of computer science” [66]. Much as mathematics has
proven to be an indispensable tool in the natural sciences [113], logic has proven exceed-
ingly useful in computer science. Its applications include databases; hardware; algorithm
correctness and optimization; Al subjects such as planning, constraint solving, and knowl-
edge representation; modeling and verification of digital systems in general; and all facets
of programming languages, from parsing to type systems and compilation [44]. Perhaps
this should not be surprising in view of the historical kinship between the two fields: Tur-
ing machines, the key theoretical innovation that gave birth to computer science, were
introduced as a formal analysis of algorithms in order to settle the question of whether the
satisfiability problem in predicate logic is mechanically decidable [24].

However, even though the primary focus of this text is computer science, it is worth
noting from the outset that logic in general and deductive proof in particular are not just
useful in computer science or mathematics. Deductive proof is a tool of universal impor-
tance and applicability for a simple reason: It is the most rationally compelling species
of argument known to humans, and rational argument is the foundation not just of math-
ematical disciplines but of all science and engineering. Chemistry and finance may have
little subject matter in common, but both are underwritten by the same canons of rational-
ity and follow largely the same approach to inquiry: formulating key concepts, articulating
and establishing their properties and interrelationships, using these to issue predictions and
explanations, and revising them as needed in the face of new empirical evidence or theoret-
ical insights. All of these activities require the ability to distinguish between good and bad
arguments, between sound and erroneous trains of thought. In particular, they require the
ability to tell when a proposition is a logical consequence of (“follows from™) a given body
of information and when it is not. And they require the ability to provide correct arguments
capable of demonstrating either of these cases. Logic provides a powerful set of conceptual
and methodological resources for doing that.

In particular, logic provides a rich formal language in which we can unambiguously
express just about anything we care to express, namely, the language of the first-order
predicate calculus, which has become the lingua franca of computer science and related
fields such as linguistics. It also provides a mathematically precise semantics for that lan-
guage, with a rigorous definition of the key notion of logical consequence. And perhaps
most importantly, it provides effective, sound, and complete mechanisms for constructing
proofs, which can be viewed as arguments given to show that a conclusion follows from
some premises. These mechanisms can be implemented on the computer, and are them-
selves amenable to mathematical analysis. Indeed, in this book almost all of our proofs are
written in a computer language, Athena, and are checkable by machine. In what follows,

I This was David Hilbert's famous Entscheidungsproblem.



Xviil PREFACE
we briefly explain why we believe proofs to be worth studying in general, and then, more
narrowly, why we are advocating a computer-based approach to them.

Why proofs?

What is the value of proof? We have already mentioned a key advantage it confers: an
exceptionally strong and domain-independent epistemic warrant. If we manage to prove
something, whether it is a mathematical theorem, a prediction of an economics theory, or a
statement of correctness for a piece of software, we can rest assured that the conclusion is
valid, as long as we accept the premises underlying the proof (these might respectively be
a body of mathematical axioms, the basic tenets and working assumptions of an economics
theory, and the semantics of the programming language in which the software is written).
In other words, if we accept the premises, then we are rationally compelled to accept the
conclusion.

Proof is the primary vehicle for knowledge generation in the mathematical sciences,
including theoretical computer science. But in computer science, proof has also found a
more practical use with a stronger engineering flavor: verification, namely, demonstrating
that a particular system (or a component, or an algorithm, or even a design sketch) works
as it should, or at least that it has certain desirable properties. Verification is becoming
increasingly commonplace and will continue to grow in importance as our lives become
more dependent on digital artifacts and as the economic and social cost of software and
hardware malfunctions becomes more prohibitive.

Verification has so far focused on automation, in an attempt to minimize the human ef-
fort necessary for analyzing large systems. However, due to fundamental theoretical limita-
tions, human guidance will remain necessary in most cases. The modeling and verification
of complex systems will continue to require the interaction of humans and machines, with
people sketching out the main proof ideas and machines filling in the details. The many
examples in this book will teach students how to reason about fundamental computer sci-
ence structures in a style that will hold them in good stead should they ever undertake any
verification projects.

Another reason to study proofs is to increase one’s level of mathematical sophistication,
both in generating one’s own mathematical arguments and in reading those of others. Proof
is central in mathematics, and if you understand its foundations you will find it easier to
understand (and do!) mathematics. You will have a deeper appreciation of how and why
putative mathematical proofs work when they are successful, but you will also be able to
better understand what goes wrong when they fail. And this leads to a more general reason
to master logic and proofs: to become better able to spot and steer clear of reasoning errors,
whether in mathematics or elsewhere.



PREFACE Xix

This is, of course, a key part of critical thinking in general. Now, we all have native
logical intuitions, so to a certain extent we can all manage to detect logical pitfalls. Un-
fortunately, however, intuition can only take us so far. Psychologists have shown that our
intuitions are often wrong and susceptible to systematic biases. These can only be recti-
fied by rigorous training in normatively correct modes of reasoning, of the kind that are
embodied in formal proof methods. And while detecting reasoning errors and questioning
assumptions may be useful in guarding against demagogues and other assorted charlatans,
it is even more important in debugging computer systems, especially software systems. In-
deed, one of the best ways to analyze and to discover errors in our systems is to attempt to
prove that there are no errors. The gradual refinement that takes place during that process,
the unearthing and explicit formulation of assumptions and their consequences, is invalu-
able in making us understand how our systems work, and when they fail, how and why
they fail. So another benefit of training in logic and proofs is cultivating a habit of correct
and careful thinking that should pay handsome dividends in the course of an engineering
career.

The mention of understanding in the previous paragraph points to yet another, frequently
understated, strength of proofs: their potential as tools for explanation. The compelling
epistemic warrant given by a deductive proof and a sharpened ability to detect and avoid
errors are fine and good, but we would get both of these if we had, hypothetically, access
to a benevolent oracle, a black box that could always tell us whether a conclusion follows
from some premises. If it turned out, perhaps after a long period of time, that the oracle
was never wrong, then we would be justified in accepting its verdicts. But while the oracle
might always be correct in giving us “thumbs up” or “thumbs down” for a given question,
and while we could rely on its answers as robust indicators of truth, we would still lack
understanding. Suppose the oracle tells us that P is indeed not equal to NP. That’s great,
but why? That is where proofs again enter the picture. A proof is not only a means of
verifying a claim. It is also, importantly, a means of explaining why a claim holds. Or at
least a good proof is.

But if a proof is to serve as an explanation, it must be digestible by humans. It must be
readable, it must be properly structured, it must abstract away details when they are not
needed, and so on. To a large extent that is the responsibility of the proof writer, but the
underlying medium—the language—in which the proof is written must be able to support
these desiderata. It must allow the expression of proofs in a style that is not far removed
from informal mathematical practice. Athena, the proof language that we use, is based on
natural deduction, a style of proof that was explicitly designed to capture the essential
aspects of mathematical reasoning as it has been practiced for thousands of years. In com-
bination with other features, such as abstraction mechanisms and complexity management
tools borrowed from modern programming languages, Athena takes us a step closer to
proofs that can explain and communicate our reasoning, but that are nevertheless entirely
formal and checkable by machine.



XX PREFACE

Why this textbook?

We were motivated to write this textbook primarily by need. Many students whom we
have asked to prove theorems in our courses, even in upper undergraduate—and sometimes
graduate—courses, have been unable to write proofs. Some have struggled even to write
down anything resembling a proof. Others have written what they thought were proofs
but were in fact poor proof attempts, full of reasoning errors. Many other colleagues we
have talked to who teach at other universities have reported similar experiences. It is clear
that neither the training nor the practice that students are currently getting in logic and
proof methods in their undergraduate courses is anywhere near adequate. A major reason
is that proof exercises are difficult to grade by hand, and thus only a few such exercises are
assigned when in fact many are needed in order to measure students’ understanding and
help them improve their skills. This situation sorely needs to be remedied, but the way that
logic and proof methods are presented in current computer science or logic textbooks, and
the limited number of exercises that can be assigned and graded in view of the required
human-intensive effort, are inadequate for the task.

The second consideration is opportunity. Due to recent research advances, programs are
now available that permit proofs to be expressed in a format that is both human-readable
and machine-checkable. These programs have been developed by one of the authors and
used extensively in research and teaching by both authors. Although other mechanical proof
assistants have been available for many years, most were developed as aids to teaching
logic to students majoring in such fields as philosophy, cognitive science, or mathematics.
By contrast, the newer programs—especially Athena, the program used in this book—
support an approach to logic and proof methods that is much better suited to the needs
of computer science students. For example, Athena fully supports proof by induction, es-
pecially for properties of data types defined by structural induction. Furthermore, Athena
allows writing proof methods that are closely related to parameterized procedures for or-
dinary computation. This correspondence allows us to point out many analogies between
proofs-as-programs and ordinary programs, thus leveraging the natural interest of com-
puter science students in programming and computation in a way that one could not expect
of students from other disciplines.

Unable to assume interest and experience in computer programming, authors of text-
books for “Introduction to Logic” and similar courses have had to find examples and ex-
ercises in artificial domains such as puzzle solving, which are often seen as insufficiently
relevant and motivating by computer science students—or, for that matter, by a broader
spectrum of science and engineering students. In this textbook we instead focus on practi-
cal computer science proof applications such as algorithm correctness properties, including
input-output correctness, termination, and memory safety; algorithm efficiency (correct-
ness of optimizations); and fundamental data type properties, such as inductive properties



PREFACE Xxi

of the recursive data structures that are pervasive across all branches of computer science.
Furthermore, such applications serve to strongly motivate attention to properties of the
fundamental mathematical concepts on which the correctness of important algorithms de-
pends, such as algebraic and relational axioms and theorems.

There are several other textbooks that aim to introduce logic and proofs to a computer
science audience, but in almost all cases the proof formalisms they use are unsupported
by software, and therefore exercise solutions must be checked by hand. By contrast, all
proofs in this textbook are machine-readable, and complete code is always given, so that
students can try out the examples on a computer, experiment with them, and get immediate
feedback. Student solutions can be mechanically checked for correctness.

A small number of much more recent textbooks do take a computer-based approach to
proofs, and their goals are fairly similar to ours, including the goal of teaching proof meth-
ods that are fundamental in computer science; the use of a mechanical proof assistant as an
integral tool in their course of study; substantial material on pervasive data types such as
natural numbers and lists; and many examples and exercises, which are mechanically check-
able. But there are also major differences. First, their main application area is programming
languages. Our book does cover that topic, but to a somewhat lesser extent, focusing more
on algorithms and data structures. To the best of our knowledge, our discussion of abstract
algebraic structures and techniques, which leads into our extensive treatment of abstract al-
gorithms and data structures, is unique. Our text also has a much more extensive treatment
of equality and order relations (both for natural numbers and integers, and at an abstract
level), as well as more extensive coverage of proof methods for sentential and predicate
logic, including numerous heuristics for discovering proofs. Finally, material such as auto-
mated testing (falsification) of conjectures, as well as other applications of formal methods,
such as SAT solving, are also not found in the aforementioned texts.

But the biggest difference lies in the style of proof supported by the respective inference
systems. As we have already pointed out, Athena uses a true natural-deduction style of
proof (the “Fitch style” of natural deduction), which allows for structured and readable
proofs that resemble in certain key respects the informal proofs one encounters in practice.
Other proof systems do not place a high premium on making proofs understandable, or
even recognizable, and in fact the texts that use them seem to have taken it for granted that
formal proof and human understanding are incompatible. We believe that readability is
not only compatible with formal proofs, it is in fact necessary if formal proofs are to reach
their full potential. A while back, in their preface to a classic computer science textbook [1],
Abelson and Sussman urged the following: Programs must be written for people to read,
and only incidentally for machines to execute. Few would debate this maxim. It might not
always be attainable, but we should always strive to attain it. It should be no different for
proofs.



XXil PREFACE

Intended audience and prerequisites

The book is intended primarily for students majoring in computer science at the upper un-
dergraduate or graduate level, but it will also be of interest to professional programmers
and to practitioners of formal methods and researchers in logic-related branches of com-
puter science, either for self-study or as a reference. More detailed suggestions are made at
the end of this section. In its examples and exercises, since they are written in a machine-
checkable language, it exhibits and requires complete rigor, but no more than what com-
puter science majors and other programming practitioners are accustomed to when using
other computer languages.

The only prerequisite is a basic level of programming experience and mathematical
knowledge, typical of a second- or third-year computer science major. In many cases, a
computer science major will take a discrete mathematics course in the first three to four
semesters, and that is desirable before taking a course based on this book but not strictly
necessary. The instructor must decide whether to require a discrete math background.

Prior exposure to functional programming would be helpful but not essential. A pro-
gramming languages concepts or survey course, usually taken later in the curriculum, is
often the first place students work with a functional language, but unless a programming
languages text uses a functional language such as Scheme, ML, or Haskell throughout, as
some do, the amount of time spent on functional language concepts is typically not that
great. We believe that functional programming can be introduced along with other con-
cepts, as this book does, and furthermore, that doing so provides more motivation than the
typical treatment in a programming languages course. In practice, the main difficulty for
students who have been taught to express computations in an imperative style, using loops
and assignment statements, is learning to express them using recursion instead. There are
many examples of recursive function definitions in the text, and as these can be directly
executed, they should provide good practice in learning how to think recursively. But a
fundamental claim that is often made about functional programs is that they are easier to
reason about, mostly because the evaluation mechanism is based on substitution, reflect-
ing standard mathematical practice; and because structural induction is a straightforward
mechanism for reasoning about recursive functions defined on inductive data types. This
text provides ample opportunity not only to compute with recursion, but also to reason
about it mechanically. In particular, the material highlights the strong connection between
structural induction over algebraic data types and recursion, a connection that is central to
functional programming and yet is usually glossed over in existing functional programming
texts [17].

Here are some more specific capacities in which this textbook could be used in computer
science departments at the upper undergraduate or early graduate level:



PREFACE XXiii

1. Existing Software Verification courses could use the book as their primary or secondary
source material, depending on whether they choose to focus on approaches based on
proofs or a combination of model checking and proofs. In addition, faculty who have
interests in software verification but have not previously taught a course on it may be
inspired by our approach and applications emphasis to introduce a new course using the
book. There is more material than could be covered in a single course, but neither of the
two main application areas, algorithms (Parts IV and V) and programming languages
(Part VI), is dependent on the other. Instructors can thus choose depending on students’
and their own background and interests. Not all students will need the depth of coverage
of logic fundamentals provided in Chapters 4 and 5, so it should not be necessary to de-
vote much class time to that material. The use of Athena as a high-bandwidth interface
to SMT and SAT solvers and other ATPs (along the lines described in the “Automated
Theorem Proving” appendix on the book’s web site) may be of particular interest to
instructors who want to introduce students to such tools.

2. Theory of Computation courses could use Parts I, II, and VI as secondary source mate-
rial in lieu of the more abstract treatments of sentential and predicate logic often found
in theory of computation textbooks.

3. Logic courses could use Parts I and II as their main source material, concentrating most
heavily on Chapters 4 and 5. It may be useful for motivation to quickly survey the
material in one or more of the later parts of the book. Related content includes:

* syntax and semantics of sentential logic;

 syntax and semantics of (many-sorted) first-order logic;

* notions of interpretation, satisfiability, tautology, entailment, and monotonicity;

e introduction and elimination proof rules;

* heuristics for proof development;

 equational and implicational chaining;

* SAT solvers and theorem proving systems.

Inclusion of the last two topics will help prepare students for writing proofs and us-
ing automated proof systems in later courses. Because of its focus on applications,
the book does not cover metamathematical results such as completeness, compactness,
the Lowenheim-Skolem theorems, Godel’s incompleteness, and so on. (Soundness and

completeness results for Athena are stated but not proved here.) All of these are standard
and can be found elsewhere.

4. In Algorithms courses, the book could be used as a supplementary text, using mate-
rial selected from Parts I through V, with less depth of coverage of logic fundamentals
and proof methods than in software verification or logic courses. Related content in-
cludes:



XX1V

PREFACE

data structures: lists, binary search trees, finite sets and relations, Cartesian products,
maps, memory range abstractions;

algorithms: binary search on trees and on memory range abstractions, exponentiation,
greatest common divisor (Euclid’s), a few generic algorithms from the C++ Standard
Template Library;

programming techniques: recursion, replacing general recursion by tail recursion,
expressing complex control structures using mutually recursive procedures, memory
range traversal using iterators, behavioral abstractions as in generic programming;

specification and verification: defining functions axiomatically, writing software
specifications within a logic framework and using them together with model check-
ing and proof attempts to detect errors in algorithm implementations, necessary and
sufficient conditions on ordering relations for correct searching and sorting.

5. In Programming Language Concepts courses, the book could be used as a supplemen-
tary text, using material selected from Parts I, II, and VI. Related content includes:

Athena’s programming language as an example of a higher-order functional language
in the tradition of Scheme: strict and lexically scoped, encouraging a programming
style based on function calls and recursion, but also offering imperative features (e.g.,
vectors and updatable memory cells);

Athena’s deductive language as an example of a special-purpose language that ben-
efits from custom-made syntax and semantics (as opposed to deductive systems that
are programmed in a host programming language);

Athena’s blend of functional and logic programming techniques, particularly the pro-
grammable interface to external Prolog systems described in Appendix B;

Athena’s logic subset as an example of a many-sorted language with Hindley-Milner
style parametric polymorphism and automatic sort inference;

examples of using infix operator precedence and associativity to reduce notational
clutter (especially compared to Lisp-style prefix notation);

correctness of a compiler from an interpreter-defined toy language to a stack-based
machine language, first without and then with error handling;

formal, executable, and mechanically analyzable definition of syntax and semantics
of an imperative language, which, although still very simple compared to real pro-
gramming languages, contains some of the most basic and essential features of imper-
ative languages, providing sufficient context for discussion of many important issues
related to programming language syntax and semantics.

Logic fundamentals and proof methods could be covered in less depth than in software
verification or logic courses, except perhaps when the last topic is to be treated in detail.



