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FOR REAL TIME PROPULSION SYSTEM SIMILATION

James R. Mihaloew Stephen P. Roth
National Aeronautics and Space Administration Pratt and Whitney Aircraft Group
Lewis Research Center Govermment Products Division
Cleveland, Ohio West Palm Beach,

capab: propulsion system pexfq
interaction on marmmed flight similators has been developed at NASA-Lewis and demonstrated
using flight simulator facilities at NASA-Ames. fe

A piecewise linear state varisble technique is used. This technique provides the system
accuracy, stability and transient response required for integrated aircraft and propulsion
control system studies. The real time dynamic model includes the detail and flexibility

for the evaluation of critical control parameters and propulsion component limits
over a limited flight mvelog;w'memdel contains tely 7.0K bytes of in-line
tional code and 14.7K

camputa
Sigma 9 computer.

A Pegasus-Harrier propulsion system was used as a baseline for developing the mathematical
modeling and similation technique. A hydramechanical and water injection control system was
also simulated. The model has been programmed for interfacing with a Harrier aircraft
simulation at NASA-Ames.

Descriptions of the real time methodology and model capabilities are presented.
INTRODUCTION

:lnCegnmdiaizcuftdpmp;]fsim cmtgl s}:ﬂ
camprehensive  source qualitative quantitati:

characteristics of aircraft and propulsion tems in a dynamic state. They also serve
as tools for the analysis and synthesis of control logic and as test vehicles for control
software and hardware development. 3

Since the advent of piloted similators and the growing emphasis for tems integration,
there has been an increasing need for higher fidelity real-time pro ion system models.
Propulsion and integrated control sgten evaluation of aircraft on flight similators require
that propulsion system simulations igni fican 5
parameters. Such simulations provide the capability to evaluate propulsion

Simulation, with its ipherent flexibility, will play a key role in the development of
tems. These simulations
ve

critical ion component aerodynamic, mechanical and thermodynamic limits. The model
may also used to analyze propulsion control failure modes and effects.

A Pegasus 11 propulsion system provided the baseline engine for developing the mathematical
modeling and simulation technique. The engine model is a piecewise linear state varisble
representation which was derived from a detailed aerothermodynamic similation of a typical
Pegasus 11 engine. Dynamics included in the similation are engine fan and campressor “rotor

1



dynamics, engine burner heat transfer dynamics and engine control dynamics. The model
calculates transient performance byezrnmiml integration of time-dependent differential

margins and thrust.

Application of the model to a simulated flight program and evaluation results are presented
in (3).

REAL TIME METHODOLOGY

The real time methodology is based on a piecewise linear state variable (4).
Within this process, the engine model uses state varisbles and matrix formula!

represent the engine process at specific operating points. 'meeﬁfortpresmtadMem
directed toward ly:h:g this methodo! to model gross engine transients accurately and
efficiently. The methodology includes following steps:

(1) apply a modal anolysis and sensitivity study of the detailed
base model to select model states and :l:p.\tcmuols

2) q)dnﬂ.zeetauevariablemdglselecdmmmml define
steady state and transient characteristics over a specified range

(3) generate acaurate model partial derivative matrices
using offset derivative techmiques

(4) comect and schedule the state variable model
partial derivatives to represent gross transients

(5) aq:lgyasinplehltacuxate integration scheme for fast computation
(6) optimize programming for real time operation

State Variable Representation
The state variable representation is shown in figure 1. It is characterized by the following
two equations:
X=AX+BU [eh)
Y=CX+DU (2
Equation 1 is a linear constant coefficient matrix differential equation that represents
computation of engine dynamics. Equation 2 is a linear algebraic equation that represents
camputation of the observed engine . X is the vector of state variables, X is the
time derivative of the state variables, U is the control input vector and Y is the -vector of
or parameters, A is the plant matrix. Its elements are the.
derivatives of time derivatives of each state variable to each state variable. ements
of the output ma C define the effect of each state variable on each output varisble. The

trix
control matrix B and the direct couple matrix D define the effect of each control variable on
each state variable time derivative and each output parameter.

Modal Analysis

A modal analysis is used to determine which states in the mﬂimaraerodmo%mnﬂ.cmdel
would adequately represent the system within the required control bandwidth nonlinear

aerothermodynamic model is then linearized to obtain the system A, B, C afid D matrices. An
elgenvector-eigenvalue analysis of the A matrix is performed. ’meerlgmvecmareeranined
to associate eigenvalues with states. High frequency states outside the control bandwidth as
shown on figure 2 are eliminated. A mode controllability matrix which defines the effect of
control inputs on states was also generated., States which are uncontrollable by the inputs
are eliminated. The result is a set of state variable vectors for the real time model.

Model Resolution

Modeling gross transient excursions efficiently and accurately :lntheatm:emhble form
depends on the mmber of models selected. Initially, a piecewise linear fit of the steady
state operating line is performed to define a minimm resolution. These models are then
augmented with additional models to accurately define transient response through the full

2



power range and any extremely nonlinear areas.
Matrix Partial Derivative Generation
State variable techniques can be employed to obtain a linear approximation of a nonlinear

system by considering operation in the vicinity of a particular operating point. Matrices A,
B, C and D are characterized by:

ay - ;% 1)
byz = :ij %)
&gy = ;% ' ()
dyy ™ ;'% | )

To te finite difference approximations of the partial derivatives, the steady state
leve%!;?:whsmmhmdsystmiwutiaimﬂ stepped in both a positive and
negative direction while holding the other state variab. and system imputs fixed.
Corresponding values of the state variable derivatives and system outputs are recorded for
each step change. Each matrix partial derivative is calculated by taking an average of both
step values:

@

3:'&1 il.x'hs ".‘i.x-
ﬂj'@"’ : l%& i

J

This process was automated on the detailed nonlinear base model. First, each X is perturbed
one at a time while holding all other states and control inputs constant. This allows
calculation of the A and C matrix partial derivatives. Each U is then perturbed one at a

time while all other controls and states constant. This allows calculation of the B
and D matrix derivatives.

Smddiﬁmtlcve]sofperumbadmsmd\e states and inputs are used. Perturbation
step size was minimized to prevent driving model parameters out of range but made large
enough to excite each state variable and output parameter, The best overall

about 0.5 percent and the inputs about 3.0 percent. The partial derivatives generated the
offset derivative technique are reasonably accurate for steady state at each omﬂidz for
which they were generated. For large transients, however, this is not necessarily true and a
forced steady state match may be required to ensure steady state accuracy £rom one state
variable model to the next along the engine operating line. To avoid this, all perturbations

are measured from a steady state operating line model which insures steady state accuracy
over the whole range.

State Scheduling Parameter

The state variable models must be comnected efficiently to provide contimuous operation over
the entire range of the model. The interpolation is controlled by scheduling the matrix
elements with an independent variable called the state scheduling parameter (SSP):

_ SSP = £(X) ®,
This parameter is derived from the state varisble vector and indicates the relative energy
level of the engine system. Applicatimofdﬂ-sgmuhnmntsinrednhgsevemllm
models to one nonlinear model as shown in figure 3. -

State Vector Integration
A simple self starting and reasonsbly accurate integration scheme is required to minimize

excessive function evaluation and computation time. Euler integration was found to meet
dmemdmmmﬂms&seqtmtlyadop:dfordﬁamdeldevelmt.
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PROGRAM DESCRIPTION

Figure Amunnmmblodcdiagrmofdwmmrmsmtesdehledmsm
varisble model logic.

The code contains first pass checks and initialization steps. The initial steady state point
is calculated from the state and output operating lines. The initial time point of amy
transient run is assumed to be in a steady state condition, which requires that:

AAX + BAU = 0 €)]
Since the state derivatives will not be

zero
the operating line, multiple passes are made through the state dynamic calculation loop until
the states settle. The solution will be a set of steady state values where the AX vector is

State derivative computations are performed the matrix multiplication of the A and B

elements with the AX's and AU's computed ear. The derivative vector is then Euler
inf ted angsstmnd into mmrage vzwrbldhgﬂﬂu umﬂadwﬁd:ml The
ve AX out o matrix integrator vector summed basepoint

output values and AY elements gives the required total cutput response
vector. ®

APPLICATION

The methodology presented here was liedtodulblh—&ma?wll pzqaﬂ::lm

A3). 'I‘lﬂ.ssyscanismedinﬂelhrr:g VSTOL aircraft. cogmte
arenld.medigimlmdelﬁoruseatdem—mﬂidlt silmlam ty to evaluate
integrated control concepts for VSTOL aircraft.

The source for the real time model development is a camprehensive aerothermodynamic
* similation of the Pegasus 11. Data from Rolls-Royce was used to represent minimum

steady state performance on all 3 .Ab.ﬂof:ipamfotsmz
and 1 percent for t and jet temperature was estab as an

acceptable matching tolerance. Four different match points were chosen covering the full

power range. As shown in figure 5, the results obtained at these on the

lmimtsimﬂatimacamcywasobtainedbyadjmdrgmmm spedﬁc;fuu
values. The results are shown in figure 6. The apparent differences in the ini steady
state are attributed to differences in the steady state and transient Pegasus 11 data. The
transient accuracy was computed by comparing the maximum rates of change. This was within 5
percent for dll ‘engine parameters.

The state varisble inmput and output vectors used in the real time model are shown in
figure 7. The state vector was derived from the modal analysis. The input or control vector
aﬂamtvecmrsmedetmﬂmdpﬂmrﬂybyﬁnelcmmlmd envelope
requirements. Fourteen linear models define the Pegasus 1l operating
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characteristics fram ground idle at 7 percent power to full maximm at 109 percent power.

These point models are linked together by scheduling the matrix elements at each model as a
ftmdx’:of the SSP. In this model the SSP was defined as the average of the steady state
ﬁnlﬂmthatmﬂdocamatmchpaxﬂmlarmtsmtevalue

n wfi
Ssp -Z - an

i=1
Thus, steady state fuel flow becomes an intermediary state scheduling parmta‘ derived from
the state vector.

The resulting flight simulator state variable engine model is a high fidelity propulsion
il e g Al oo s R oy e e i

5 ts rotor The computer program
:mamesimﬂaﬁngthe engine ea]s.:ﬁues both steady state and dynamic engine characteristics that
are representative of the Pegasus 11 engine.

RESULTS
n\eopmtiamlmldmdjgibalmdelcmmhmammximmly7a(bytesofhrlim
. computational code and 14.7K of block data. Programming techniques developed in (1)

Forasimﬂaﬂmtimestq:sizeofm propulsion system model executed in 2.3ms on a

Univac 1110 for a real-to-execution time ratio of 21.7. Q’Ad'anerm:Sigm9ecnp.xter used
at NASA-Ames, the execution time was 8.9ms for a ratio of 5.6. These computation times
kx:ludedadetailedhydrm:ectmﬂcal trol and an aircraft force and balance section. The

consumed about 75 percent of the to execution time. 'memtdxopemtim

engine
hmlvedind:eamtevariablemtimsmmed&ﬂpemm t of that

cases

fuel flow rmppmvidesamderatelympidmimtdisunbamﬁntallmdnﬁﬂlsetof
derivatives to be exercised. A test case at each corner of the flight

envelope as shown in figure 8 is considered. An additional test case at sea level static

with response to the same fuel flow input but including a water injection step at 92 percent

fan speed was also run. Data from each case was compared with the aero

similation from which it was derived. All parameters are in percent of full range.

Transients are shown in figures 9 and 10 for only the full range acceleration at 5000 feet
altitude and the same case with water injection at sea level static.

'I‘he full range acceleration altitude run, figure 9, demonstrates the effects of altitude on

the model. Transient behavior and high power steadystatelevels are very closely matched
especially for the output thrusts. Simedm:st is the primary output to the aircraft
simulation, it is essential to have thrust representative of the real system. Also, although
not shown here, differences up to 6 percent were  exhibited in some internal engine

parameters, inpartiuﬂar jet pipe temperature and fan and campressor surge margin. These
differences could be significant if they were used as a sensed parameter in a control system.
The test case with water injection, figure 10, showed much the same accuracy. There was no

particular difficulty in modeling the steady state or dynamic effects with water injection.

Results of the other test cases, although not shown here, were similar. The effect of
combined altitude and speed showed that altitude had the most effect. Full range transient
matching was excellent here with most differences occuring again at low power levels. Speed
effects alone had a relatively insignificant effect on the state variable model. High and
low steady state level and transient profiles matched extremely well.

The engine model presented here was combined with e detailed representation of a
fuel control and integrated into a simulation for the Harrier aircraft. The
results of that evaluation are given in (4).
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CONCLUDING REMARKS

A state scheduled state varisble methodology has been used to te a real time tal
propulsion system similation for piloted simulators. The me logy proved effective in
generating a mdelofeme]lmtaccuracymanndtadop&atimalrme campared to the

aerothermodynamic model from which it was derived. The methodology provides a very flexible
means to accomplish a real time model in a reasonably short time.

The model executed 5.6 times faster than real time using an integration time step of 50ms
Computation time analysis indicated that approximately 30 percent of the cycle time was
consumed in matrix operatioms. It that this could beahi@xpayoffareaforﬁmxe

. Aldn@dnemtalmntofeodemudinﬂdsmdel high, 21.7K bytes,
this is generally not a limiting factor in real time simulations
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MATRIX QUTPUT EQUATION
AY=C* AX+D- AU

D
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MATRIX PLANT EQUATION
AX=A-AX +B- AU
Figure 1. - Real time model state variable representation.
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Figure 2. - Modeling frequency range of interest.



