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PREFACE

It 1s indeed a great honour for any scientific
worker to see his contributions published in a collected
form. Such a publication provides a record of the history
of his own development and contributions he and his colleagues
have made to the subject. It remains thus a memento of a
personal kind for his family and successors as well as
recording small steps taken in progressing and pushing forward
the frontiers of his subject.

The selection of the papers was made by Profsssor Qian
and his colleagues and covers a twenty year periocd of work at
University College of Swansea in which finite slements play a
dominant part. My entry intoc the subject area was much motivated
by contact with Prof. Clough of Berkeley who first introduced me
to the fascinating field of finite elements. However, the fundamental
seeds of interest in a numerical sclution of engineering problems
came earlier. Here, I would like to mention Prof. A. J. S. Pippard
and Prof. R. B. Southwell who respsctively gave me an interest in
application of theory to the structurai field and shawed me the
power of numerical calculations in the early days based on finitg
difference, calculus and relaxation methods. Much time has passed
since those early days, but perhaps the reader will discern
theroughout the many publications a continuing thread of attempting to

unify and generalise the procedures showing their relation to history.

I hope this collection will be of use to my
Chinese colleagues wha in recent years have shawn sc much
interest in the subject and contributed proportionately.

I wish them continued success with their efforts.

0. C. Zienkiewicz
iii
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The Finite Element Method:
From Intuition to Generality |

0. C. ZIENKIEWICZ

SCHOOL OF ENGINEERING, UNIVERSITY OF WALES
SWANSEA, GREAT BRITAIN

Introduction

The engineer in need of numbers with which his design
process can be described is often impatient with the
“properly formulated” problem for which complex equa-
tions exist but for which only comparatiyely trivial so-
lutions can be achieved by classical mfathematics. At
such times, he often formulates ad hoc, crude, models
which, having served the purpose once, are later dis-
carded. On some occasions, however, his inelegant ap-
proach leads to a discovery (or rediscovery) of powerful
and fundamental methods. Examples ranging from
Heaviside’s operator techniques to Southwell’s demon-
stration of practical use of finite differences can be
quoted. The finite element method must now be viewed
in the same category. Its popularity among engineers is
assured and, at long last, an arousal of interest among
‘applied mathematicians promises, at least, a consolida-
tion of fundamentals if not more rapid progress.

The methods of dealing with discrete structural sys-
tems or indeed with similar hydraulic and electrical net-
works are well understood by the practitioner. Many
computer programs are available here and indeed were
among the earliest to be developed after the advent of
this “electronic slave.” In perhaps a naive, but essentially
physical, manner, attempts to reduce a continuum to an
assembly of discrete, equivalent, elements frequently
have been made. Here, in the context of an elastic con-
tinuum, the first attempts tried to assimilate the con-
tinuum behavior into an assembly of rods or beams
which were standard ingredients of the engineer’s tool
kit. The early work of Hrenikoff {Ref. 1} in 1941
McHenry {Ref. 2] in 1943, and Newmark [Ref. 3] in
1949 should be noted. However, the credit of approxi-
mating directly to a continuum region by an element
with multiple connecting points must go to Turner, et al.,,
[Ref. 4] in 1956 and Clough [Ref. 5] in 1960 and
Argyris [Ref. 6], 1955. Here for the first time, the
magic name of “finite element” is used, but the deriva-

tion of the basic properties is achieved by physical argu-
ments relating to stress or displacement distribution
within the subregion. The fact that at ‘that time the
computer begins to be an effective tool leads, however,
rapidly to the possibility of solving real complex elastic
solutions. .

In attempts to tidy up the basis of deriving stiffness
properties of elements, it is rapidly realized that one way
of doing this is to assume a displacement pattern de-
fined in terms of nodal displacements, element by ele-
ment, so that continuity is observed and internal forces
are obtained by virtual work. The identity of this process
with that of approximate minimization of total potential
energy similar to Rayleigh-Ritz processes becomes obvi-
ous [Ref. 7]. Indeed, the maig difference in the
method from that previously used as a standard approxi-
mation is the piecewise continuous field definition en-
abling irregular boundaries to be simply fitted and
avoiding thus the obvious limitations.

Further, the second essential merit of this piecewise
definition becomes apparent. Unlike in the “standard”
Ritz process, the minimization equations form banded
matrices (or at least sparse) for which solution by direct
methods or iteration can be obtained conveniently.

.Two matters become clear at that stage. The first is
that if the finite element process is so simply described,
it may be a ‘rediscovery”” of known mathematical
methods. The second is that its range could be extended
to other situations where (quadratic) functionals have to
minimized. The first point is rapidly answered by re-
trieval of the now classic work by Courant'in 1943
{Ref. 8] in which the essence of a triangular finite ele-
ment .is formulated and of the parallel work of Prager
and Synge [Ref. 9] which led to the “hypercicle”
method {Refs. 10,11].

The second pdint is followed by a rapid extension of
the finite element process into nonstructural fields by
Zienkiewicz [Ref. 12] and others [Refs. 13-16] wha’
demonstrate the applicability to fluid mechanics, heat



conduction and indeed other problems governed by the.

quasi-harmonic differential forms.

Further, if the variational process allows a finite ele-
ment formulation then (a) other parameters than nodal
unknown values could be included in the analysis, and
{b) many alternative formulations of same problems are
possible. < :

Pian [Ref. 17] shows how, in the context of elas-
ticity, nodeless parameters can be introduced and indeed
treated in otherwise standard manner. The retention of
some of the nodal parameters is, however, always essen-
tial to preserve required interelement continuities.

Again in the context of elastic analysis it is shown
that different variational forms can be used. Veubeke
[Ref. 18,19] demonstrates the use of equilibrating stress
distributions and use of complementary potential energy
as the functional to be minimized. (A particularly simple
device for obtaining such equilibrating fields and the
corresponding duals 1s derived by Veubeke and
Zienkiewicz [Ref. 20]. Reissner functional 1s used with
success for the first time by Herrmann [Ref. 21} while
other possible hybrid formulations are discussed in detail
by Pian [Ref. 22]. It is, however, once again instructive
to observe that the complex hybrid functionals were
derived by Pian long after the elements of that particular
type have been introduced and used successfully on the
basis of physical mtuition alone [Refs. 23, 24].

Indeed, the last remark prompts the writer to observe
that, even today, some of the very successful elements
having apparently no correct variational form are known
to converge and yield extremely accurate approxima-
tions. Is the variational form the only one for which
finite elements can be properly derived? It will be shown
that other alternatives are open.

Some Mathematics of Finite Elements

If a quadratic functional to be minimized over the
particular domain 1s X and is defined by an integral of
the unknown funcuion {#} and some of its derivatives,
then, if {9} is described piecewise element by element
in terms of coordinate, “shape” function [N} and (un-
known) nodal parameters{¢} , the set of minimizing

~guations takes the form [Ret. 25]
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for each element, the contributions of each element, x¢
are found to be
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and the important network topological assembly rules

apply, i.e.,
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The similarity with the standard structural problem is
evident whatever the physical or mathematical nature of
the functional.

The formulation is almost automatic once the coordi-
nate, shape functions [N] have been defined.

If the functional involved is quadratic, the matrices
[K] and {F} and the similar contributions of elements
are independent of the nodal parameters and can be
evaluated explicitly.

Definition of such shape functions is not, however,
completely arbitrary. Certain completeness criteria have
to be observed if convergence to the correct solution
with decreasing element size is to be observed.

In the first place, on interelement boundaries certain
continuity requirements must be observed so that no
contribution to X arises from there [Refs. 7, 25].
Secondly, assuming no singular behavior, arbitrary con-
stant, values of the integrand of X have to attainable as
element size decreases. In the elasticity case, this is the
constant strain criterion given by Bazeley, et al., [Ref.
26]. Some generalizations of the convergence criteria
which all fall within the “completeness” definition of
Mikhiin [Ref. 27] are discussed by Pian [Ref. 28] Key
[Ref. 29] Oliveira [Ref. 30] and Johnson [Ref. 103].

While most of finite element formulation fits within
above variational category, certain elements violating the
above criteria are known to converge monotonically to
correct values at least for certain mesh subdivisions. For
instance, a triangular plate element violating (slope) con-
tinuity requirements presented by Bazeley, et al., [Ref.
26] is shown there to be exactly convergent (for meshes
generated by three seis of parallel lines), while an older
and similarly nonconforming rectangle [Refs. 31, 32] is
shown to converge by Walz, et al., [Ref. 33]. Another
extremely successful element not based on any known
variation principle has been derived by Melosh'[Ref. 34].
Why such forms exhibit a generally satisfactory behavior
is not yet fully understood, but perhaps there is some
sense in physically identifiable modelling.

Other, more formal ways are, however, open to finite
element formulation which need not be associated with
a variational formulation. All weighted residual processes
of solution of a differential equation [Ref. 35]

A({¢}) =0 (5)



will lead to the standard assembly form once the shape
of the unknown function is described by Eq. (2). Collo-
cation by points or areas can be so represented, and
indeed if the weighting function is represented by the
shape function itself, then the Galerkin process is ob-
tained. In some cases, application of such approaches
will lead to precisely the same results as obtainable vari-
ationally [Refs. 35,361, but the range of application may
well be extended now to problems where variational
functionals do not exist or have to be artificially con-
trived. A typical example of this may be the application
of finite element-Galerkin formulation in the time do-
main of transient problems [Ref. 37]. Yet other ap-
proaches to finite element formulation have been sug-

gested by Oden [Ref. 38].

Matrices and Finite Elements

With matrix methods applied to the organization of
structural calculation at about the same time as finite
elements first made their appearance [Refs. 6, 39, 40]
there has been some identification of the two, distinct,
processes. Clearly, if matrix methods are the most effi-
cient process at organizing the solution of the discrete,
network, problem, they will be used in assembly and so-
lution of the typical Eq. (1) resulting from discretization.
Equally clearly, the process of finite element method
which reduces the continuum description to that of a
discrete model forms the essential approximation which
has nothing to do with the solution technique. The
writer is prompted to make this remark to illuminate the
nonstructural applied mechanician who may well be put
off by the complex ritual of so-called “matrix methods
in structural mechanics.”

(Further, this clarification is perhaps called for in
view of the frequent confusion of relaxation method and
finite difference process in a previous generation.)

In some recent texts on matrix methods finite ele-
ments are mentioned explicitly and such texts are valu-
able to the student wishing to acquire familiarity with
the standard operation [Refs. 41, 104, 105].

Finite Element Versus Finite Differences

In the carly days of the finite element process if often
has been argued that little advantage over the finite dif-
ference discretization processes exists. Now, on occasion
it is argued that the two processes are in fact identical.
It is perhaps necessary to introduce some appropriate
semantics before such arguments are meaningful. If we
mean by the finite difference method a “localized,
direct, approximation” to the “differentiul governing
equation” [Ref. 42}, then we can list on the credit side
of the finite element process (derived in an integral
manner):
(a) the ease of arbitrary positioning of nodal points
(economy),

(b) the infinite possibilities of generation of
proved” elements by simply increasing the num-
ber of element parameters,

{c) the improvement in boundary-value approxima-

tion due to its integral form, and

(d) the ease with which different types and sizes

of elements can be adopted.

Item (c) is of the utmost importance, and some
recent publications comparing the asscmbled finite ele-
ment and finite difference algorithms assess their relative
accuracies without reference to the boundary conditions.
Here, usually; standard finite difference operators intro-
duce largest truncation error if any gradient conditions
are specified.

In recent years, however, a number of “finite differ-
ence” processes have appeared in which only lower order
derivatives are directly approximated and the final
algorithm is assembled via the application of variational
principles [Refs. 43, 44]. These clearly bridge some of
the computational gaps between the two approaches,
and indeed some of the obvious advantages disappear.
Nevertheless points (a), (b) and (d) above are still valid.

Finally, although not directly relevant to efficiency
of computation, the physical interpretation which can
be given to the finite elements givés the user a sense of
reality. This “psychological” point is of twofold benefit.
First, gross errors of formulation are easily detected,
and second, unexpected extersions of the process occur
to the users. '

The Importance of Shape Functions

With the type of problem and variational (or other)
formulation decided, the only major step is the decision
regardm" the shape function form. Once this is done all
remaining algebra and computatlon follows a standard
pattern. The importance of the chonce of sultable shape
function is obvious: .

The simplest’ form of space subdwxsmn is the triangle
for two, and tetrahedron for three, dimensions. Such ele-
ments with nodes placed at the vertices a‘rie among the

- earliest uged [Refs. 4, 45] in problems for which the

definition of X needs only continuity of the unknown
function (elasticity, quasi-harmonic problems, etc.).

The observation that if the total number of degrees of
freedom associated with an element is increased then

- equal accuracy of the assembled problem can be obtained

with fewer degrees of freedom led to the introduction of
more complex elements. Triangles and tetrahedra with
nodes placed at midsides were introduced by Veubeke
Ref. 18] and Argyris [Ref. 46], respectively. Today,
complete families of such and other elements can be
generated explicitly [Ref. 47], see Fig. 1.

With few, large elements, the merit of close boundary
representation disappears unless the element can becomne
curved. The introduction of local, curved coordinates
defined by the same shape functions as used in the func-
tion epproximation (isoparametric system) by Irons
[Ref. 48] and the subsequent use of numerical integra-
tion permit just such a development; see Fig. 2. Today,
such elements are used extensively in two- and three-
dimensional analysis [Refs. 47, 49, 50]. Figs. 3(a) and
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(b) show typical subdivision of “practical” domain by
simple and curved elements (the first with four, the
second with 60 degrees of freedom).

The use of numerical integration introduced first in
such elements is now widespread. Not only can ele-
ment properties be evaluated rapidly by its use but
many opportunities for algebraic or computer errors
are eliminated.

In some problems, the definition of the functional
requires additionally the continuity of first or even
higher derivatives of the function between elements.
Such situations are typical of plate and shell problems in
elasticity or viscous flow problems in fluid mechanics.
Here, the generation of appropriate shape functions be-
comes more difficult. Successful avoidance of this con-
tinuity already has been mentioned [Refs. 26, 31, 32] in
the context of plate bending, and same elements have
been used in viscous flow solutions [Ref. 51]. However,
the achievement of compatibility can be accomplished
in two ways: first, by the use of singular functions shown
in context of simple plate elements by Clough, et al.,
[Refs. 52, 53], Bazeley, et al., [Ref. 26}, and Veubeke
[Ref. 19], or second, by introduction of higher order
continuities (second derivatives) at nodes first done by
Bogner and Schmit [Ref. 54]. Indeed, the latter pro-
cedure is gaining popularity in various complex plate
elements currently advocated [Refs. 55-59].

Similar problems are encountered in shell analysis,
and here the reader can trace the development from
simplest approximation by flat or conical surfaces [Refs.
60, 61] to recent, sophisticated curved shell elements
[Refs. 52, 62, 63]. A full bibliography can be found in
the text [Ref. 25].

Once again, the isoparametric concept can be used
and curved shell elements obtained by degeneration of
full three-dimensional continua as shown by Ahmad,
et al., [Refs. 64, 65]. Indeed, it is interesting to remark
on the side how here the more fundamentally correct
formulation avoids the pitfalls introduced by the physi-
cally dubious approximations which, perforce, have to
be introduced into classical plate and shell theory.

Nonlinearity and Dynamic Problems

Problems of solid mechanics with nonlinearity due to
material or geometric causes or problems with dynamic
terms obviously can be dealt with in a similar manner
using a finite element discretization as when other
methods (such as finite differences) accomplish the same
purposes. In the first, some form of iterative approach
has to be adopted, while in the latter, eigenvalue or
stepwise time integration methods have to be used.
With the power of solving complex, linear, boundary-
value problems available, it is obvious that such applica-
tiOnS are now becoming SO numerous that a Compl’e-
hensive review is not practicable. Once again the simple
and direct approach used in the physical formulation of
finite elements proves invaluable in treatment of such
comprexities. Indeed, the close visualization of the phe-

nomena allows the development of iterative processes
which mathematically might not be obvious.

With nonlinear material properties, for instance, sys-
tematic adjustments of initial strains, initial stresses or
of elastic constants in the linear elastic problem allow
rapid convergence of the essentially nonlinear equations
to be achieved. That mathematically such approaches
often are identical to Newton-Raphson or other known
techniques does not diminish their usefulness in choosing
the most rapid convergence path. The [Refs. 25, 45,
66-77, 104] are but a few selected examples of the wide
impact of finite element processes on tackling such situ-
ations in which the physical properties range from ideal-
ized metal plasticity, through various creep phenomena
to some very specialized properties exhibited by rock
and concrete. A review summarizing the various ap-
proaches used is given in [Ref. 77].

Essentially similar approaches can be followed in
geometric nonlinearity problems such as arise in stability
and large deflection considerations of slender structures.
Although the classical, linearized stability eigenvalue
problem — so popular in analytical literature — was the
first target [Refs. 78-82), now the possibilities of follow-
ing through the large deformation influences are at last
open [Refs. 40, 83-89}.*

Indeed, the feasibility of combining nonlinear ma-
terial properties with large deformation behavior are
indicated by Marcal [Ref. 86], and many further
studies in this context doubtless will appear. Some
interesting applications of the process to large strain
problems have been given by Oden [Refs. 90,91].

The literature on dynamic application and in particu-
lar on natural frequency studies of problems by the
finite element method is so large that it will not be cited
here. Indeed, the omission is justifiable inasmuch as
standard methods are usually used once the discretiza-
tion his been accomplished. For some typical applica-
tion, the text by Zienkiewicz [Ref. 25] or the Proceed-
ings of Conferences on Matrix Methods in Structural
Mechanics held at Wright-Patterson AFB, Ohio, in 1965
and 1968 can be consulted. Much, however, remains to
be done in the general study of transient response of
linear and nonlinear systems, and doubtless more will be
heard in that context in the near future.

The Future Path

From this brief survey it should be apparent that (a)
the method of a wide general applicability and that (b)
most of the problems to which it has been applied are of
the structural-solid mechanics type.

Indeed, perhaps without undue exaggeration, it may
be said that with present day size of computers solutions
can be obtained to all solid mechanics/structural situ-
actions on a practical basis. While further work doubt-
less will continue here, a path of diminishing returns has

*Thus the mathematically interesting but physically un-

tenable bifurcation stability studies may finally be replaced by
ctiteria much closer to reality.



been reached at least in matters of basic formulation.
A spate of papers on new element forms is unlikely to
result in dramatic improvements (although here perhaps
the problem of shell structures should be excluded).
Perhaps the most justifiable work is now in the study and
introduction of realistic material parameters and consti-
tutive description, and as this work progresses many
novel applications will be made.

The position is not yet similar in other fields of engj-
neering activity. Some simple application of the possi-
bilities in the context of fluid mechanics, [Refs. 92-94],
heat transfer and electromagnetic phenomena have been
mentioned [Refs. 12, 13, 15, 16, 37, 51, 95, 96]. Some
more complex problems involving structure-fluid inter-
action, etc., have been formulated and solved [Refs. 97-
100]. Others, like the flow phenomena with vorticity,
solution of Navier-Stokes equation and flow of non-
Newtonian substance, are under study at the present
time at the author’s institution (Swansea) and elsewhere.
It is in such new applications and others yet not formu-
lated that the potential expansion lies in the general
applied mechanics sense.

All this having been said, from the engineers’ point of
view, matters of maximum efficiency are vital, even for
problems which now can be solved. Here, ideally, use of
the powerful method should result in daily design im-
provement. Questions of economy and ease of access are
paramount. Already much has been done at various uni-
versity centers where such work is going on and at large
industrial organizations. (References [101] and [102],
for instance, demonstrate the advances in equation solv-
ing procedures so essential to the whole process.)
Automatic mesh generation process, easy data handling
methods, efficient programs capable of breaking the
“cost barriers” and finally simple output devices are
items on which efforts must be continued. If further
breakthrough are to be expected, it is in this area that
they will occur.
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