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PREFACE

As one question gives rise to anotheér, pure mathematics arises from

" the conceptual framework within which man organizes his experience.

The concept of number is fundamental in this framework--logically
prior to most of the concepts of physics, for example--so that it is
hardly surprising that number theory has had a special charm for
amateur and professional mathematicians for centuries. The subject
which is known today as algebraic number theory began with attempts
to prove Fermat's famous ''last theorem": the equation X"+ yn =z
has no solution in integers x, y, z if n is greater than 2. 1In
Hilbert's "Zahlbericht" these attempts were worked into an organic
structure--the theory of algebraic numbers--which also encompasses
other mathematics not originally motivated by Fermat's problem. Since
the Zahlbericht was written, algebraic number theory has flourished.
Many current investigators are primarily interested in questions which
have arisen as the subject developed; others are interested in
Fermat's theorem or other long-standing questions about diophantine
equations: the subject exhibits a healthy mixture of "pure" and
"applied" aspects. One of its chamms is that it begins with questions
which are easily understoodp Another is that in the study of those
questions a wiae variety of mathematical tools are used.

It would be difficult to improve on'Samuel's Algebraic Theory

of Numbers for an introduction; the present book is intended to take
up about where Samuel's ends. There is no single path into the sub-
ject; the sense of unity must be provided by the questions considered.
Concretely in the text the. exercises do most to tie together the
different chapters.

The first three sections of Chapter 1 contain a very brief

summary of the material with which a reader should be familiar; it

i3a



iv PREFACE

is all in Samuel's book (e;cept fbr-the Chinese remainder theorem
which is proven in full) but mot everything in that book is prereq-
uisite to this one. Chapter 1 also contains a section devoted to
Hilbert's theory of ramification in Galois extensions and an optional
section exposing the structure theory of finitely generated torsion-
free modules over a Dedekind domain.

Chapters 2 through 5 develop basic concepts of algebraic number
theory using the techniques of localization and completion. .The'
methods in these chapters are almost exclusively algebraic. Chapters
6 through 8 make use of analytic methods and are primarily devoted to

a detailed study of abelian extensions of the rationals. These are

~the extensions about which the most is known and which serve as proto
. types for the generalization .of the theory to relati#e and nonnormal
extensions. Many of the elementary questions which have motivated
the study of algebraic numbers (for example Fermat's theorem or the
representation of integers by quadratic forms) lead expecially tb

the absolutely abelian fields. The last chapter introduces tle study
of normal extensions as modules over a suitable group ring.

Chapters 2 through 8 are based on notes of a first year graduate
course I gave'at the University of Florida in 1972-1973. That course
began with the study of Samuel's book during the fall quarter so that
the notes were covered in the winter and spring quarters.

There are a few comments that I should make about the style in
which the book is written. I have tried to give a careful exposition
of the central parts of algebraic number theory and at the same time
to indicate various directions in which the theory can be pursued
further. These indications, sometimes in the text and often in the
exeréises, are usually only sketched. Almost any chapter in the book
could be expanded into an entire text, but in most cases those texts
would not be about number theory. Sometimes I have repeated a defini-
tion or re-explained a notation; occasionally an entire proof has been
repeated. I hope this will not unduly annoy a systematic reader and
will be appreciated by those who turn to the book for reference or
to refresh their memories. I have spelled out many words that are

usually abbreviated; the words can be read just as quickly as the
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abbreviations and they look much better. There is no symbol to
indicate the end of a proof. The proofs that need one are either
poorly written or need to be studied more carefully.

The exercises are an imﬁortant part of the book and you should
read them whether or not you work on them. I exhort the student to
read actively; you must ask yourself questions and try to relate
different parts of the book to each other. The exercises should be
of some help in this. You may also want to consult the book by
Borevich and Shafareﬁich which has fine problem sets. Finally, if
you are using the book in a class, take advantage of the teacher.

You are learning best when he is talking about something to which you

‘have given some thought; study and ask questions.

It is a pleasure to acknowledge the influence and help of teachers
and friends. Leon McCulloh introduced me to algebraic number theory
as a graduate student, helped me through my thesis, and remains a
good friend. I have also learned much from Helmut Hasse, even without
having worked with him personally. His books and research papers have
contributed enormously to mathematics in the twentieth century. At
the same time his careful style of exposition and sensitivity to
language stand as an example for all of us who write mathematics.
Chapters 3 and 8 -of this text derive from Hasse's treatments of the
same subjects.

I had the opportunity to attend the lectures by Kenkichi Iwasawa

during 1971-1972 on Zz—extensions and cyclotomic fields. Iwasawa's

- total command of the subject and his subtly dramatic presentation

made a lasting impression on me. Many parts of my exposition, espe-
cially in Chapter 6, are based on his.

The books by Lang and Borevich and Shafarevich have also influ-
enced my precentation. Lang's use of Lipschitz maps in the analytic
theory seems to be a good idea.and I have used it in Chapter 7. His
book also contains an introduction to many important topics in number
theory that are not touched upon in this book, for exaﬁple, adeles,
ideles, and classified theory.

The theory of quadratic forms, which is not touched upon in this

book, has been an -important part of algebraic number theory from the
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earliest times. (Look at the book by Dirichlet-Dedekind [61.)

Borevich and Shafarevich affords an excellent account of this theory.
1 ¢ am';ndebted to Danny Davis and Professor Robert Gold who have

read parts of the manuscript and offered many useful suggestions

and to Sharon Bullivant who has typed the book; I thank them all.

Robert L. Long
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Chapter 1

DEDEKIND DOMAINS AND ALGEBRAIC NUMBER THEORY

The first three sections of this chapter are a review of the most

basic facts about Dedekind domains and algebraic numbers. They contain
only a few proofs. Their main purpose is to be available for reference :

when questions arise about notation or assumed results. I suggest that

the ‘reader skip them entirely or else skim them for items of possible
interest. When you need to refer to them, the index will direct you.
The fourth section can be skipped also. The reader who chooses
to read it will find a coherent account of ramification theory. Many
of the results in this section appear as problems in later chapters.
The fifth section is farther from the mainstream of ideas in the book

and is not needed for any of the subsequent chapters. It is included

-

-

. »".:‘S“.‘l

because it rounds out the elementary theory of Dedekind domains nicely.a?7

It would be possiblé to give a systematic exposition of much of algeaé

braic number theory using the '"global' methods of Section 5.

1. Dedekind Domains

. duct of prime ideals. In a Dedekind domain the factorization of an

ideal as a product of prime ideals is in fact unique. Equivalent ‘:é>~

definitions are (1) a Noetherian integrally closed domain in which

every nonzero prime ideal is maximal, and (2) a domain for which every

ideal is a projective module. Dedekind domains are discussed thoroughly

in [37); for the homological definition see [30].

Let A be a Dedekind domain and K be its quotient_ field. Any ideal
v

p (a)

in A can be written uniquely in the forma =1 p where the



2 DEDEKIND DOMAINS AND ALGEBRAIC NUMBER THEORY 1

product is over all nonzero primes p and the exponents vp(a) are
almost all zero. For any prime p, we write Ap = {x e K: 9y € A\p,
yx ¢ A}. This is the ring of quotients of A with respect to the
multiplicatively closed set A\p. In a Dedekind domain, the ideals
are partially ordered by set theoretic inclusion and also by the

relation of divisibility. The two partial orders are related:

(1.1) Lemma. Let a and b be ideals in the Dedekind domain A. Then
a > b if and only if a|b (i.e., a divides b).

Proof: If alb, then b = ac for some ideal c of A. Obviously,
ac c a. Conversely, suppose that a > b. To prove the divisibility
_rel%tﬁon, it is enough to show that for any nonzero prime p,vp(a) <
vp(b). These exponents are unchanged if a and b are replaced by the
ideals they generate in Ap‘ Thus one may assume that a and b are both

powers of p. But in that case, the result is obvious.

Remark: Let A be aﬁy commutative ring and S be a multiplicatively
closed subset of A. The ring of quotients of A with respect to S,
denoted S-lA, is a ring whose und;rlying set is the set of equivalence
classes of pairs (a,s) € A X S under the relation (a,s) ~ (a',s') if
and only if there is a t € S 'such that t(s'a - sa') = 0. The opera-
tions in S'lA are defined by [a,s] + [a',s'] = [as' + i's,ss'] and
[a,s][a',s'] = [aa',ss'] (where [a,s] denotes the equivalence class

15 defined by 6(a) =

[sa,s] (where s is any element of S) induces an inclusion preserving

of the pair (a,s)). The homomorphism 6:A - S~

correspondence between ideals of A and ideals of S-lA. The restriction
of this correspondence to the set of prime ideals of A which do not
meet S is a bijection onto the set of all prime ideals of sTIA. More
details can be found in [37, Chapter IV, Sections 9 and 10].

In the study of Dedekind domains, it is often possibl% to reduce

a problem about A to a problem about one of the rings A_ (p is a

4

nonzero prime ideal).  Because the ring Ap has a unique maximal ideal

(generated by p), the following result may then be useful:

(1.2) Nakayama's Lemma. Let A be a commutative ring and a be an
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ideal which is contained in every maximal ideal of A. If X is a

finitely generated A-module and aX = X, then X = 0.

Proof: If X # 0, then, being finitely generated, it has a maximal
proper submodule Y. X/Y is a simple A-module and is therefore isomor-
phic to A/m for some maximal ideal m. Thus mX < Y. But then

X =aX c mX c Y, which is impossible. Therefore X = 0.

Returning now to the ideal theory in a Dedekind domain one can
see, using (1.1), that the greatest common divisor of two ideals is
the smallest ideal which contains both and that the least common

multiple is the largest ideal contained in both. In terms of the vp's:

(1.3) Lemma. For any ideals a and b and for every nonzero prime ideal

P,

min{vp(a), vp(b)}
max{vp(a), vp(b)}

vp(a + b)
vp(a n b)

(1.4) Proposition, Let a, b, and ¢ be ideals in a Dedekind domain,
then

an (b +e) (anb) + (ane)

a+ (bne

(@ +b) n(a+c)

The reader can prove this result by calculating Vp on both sides using
x.3).

(1.5) Chinese Remainder Theorem. Let A be a Dedekind domain, a

L ERREEL
..,xn € A. The system of congruences, x = xi

ideals in A, and X1s-
mod a, (i=1,...,n) admits a solution x € A if and only if X5 = xj

mod a, + aj for each pair (i,j).

"

Proof: If x is a solution, then X5 % % xj mod ai + aj. The

converse will be proved by induction on n. When n = 2, X=Xy = a;-a,
for suitable a. ¢ ai. Thus. x = X;-a; = X,-a, is a solution, Now

assume the theorem has been shown for n-1 simultaneous congruences.

i

Then there is an x' with x' Xy mod ai for i=1l,...,n-1.  We seek an

o n-1 -
X, X = x' mod ﬂi=1 Qs X B Xy mod a . These two congruences can be
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4 =t B e
solved if x = x' mod ﬂi <n% * 4, By the distributive law, the

last ideal equals N, . a@; +a). Fori=l,...,n-1, x =x, =x'

mod ai; thus a solution exists.

The reader may find it worthwhile to write down the special case
of the theorem in which A = Z. Of the many possible corollar}es, only
one will be stated here.

(1.6) Corollary. If my,...,m are integers which are relatively prime

in pairs, then
Z/(mmy-om) ¥ Z/(m) x Z/(my) X --- xZ/(m).

Given integers XpseeesX there is an x = x. mod m, (2 = lincos®)s

p i
and x is unique modulo mym,"em .

Proof: Because the m. are relatively prime in pairs, the kernel

of the homomorphism Z - HZ/(mi), which is O(mi) in any case, equals
8 1
(mlmz"'mr). The theorem asserts that the homomorphism is surjective.

An A-submodule of K which is finitely generated is called a
fractional ideal. Equivalently, a submodule M of K is a fractional

ideal if and only if aM c A for some a € A. The fractional ideals
constitute a free abelian group of which a basis is the set of nonzero
prime ideals of A. The ideal A is the identity element of this group.
For any fractional ideal a, the inverse is al-fxex: xa c A}. The
ideals of A are often referred to as integral ideals. For fractional

ideals a and b, a divides b, written a|b, means that b = ac for some

integral ideal c.

2. Extensions of Dedekind Domains

Let L/K be a field extension qf finite degree n. An element x € L

is integral over A provided that x is a root of a monic ﬁolynomial

in A[X]. The elements of L which are integral over A form a subring

B € L called the ihtegfal closure of A in L. (For details see [31]

or [20].) It is easy to see that for any x ¢ L therg is an a € A such
that ax € B; for example, one'can,choose a so that it clears the
denominators of the coefficients of the minimal polynomial of x ove;
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K. In particular, L is the quotient field of B, and one can always
find a basis for L/K consisting of elements of B. A very important
result in the theory of Dedekind domains is the following:

(2.1) Theorem. The integral closure of a Dedekind domain in a finite

extension of its quotient field is a Dedekind domain.

If L/K is a separable extension, then B is not only a Dedekind
domain, but it is also finitely generated as‘an A-module. This is

proved in [31]; for a yvoof of the theorem see [37] or [17].

Let p be a nonzero prime of A. Being an ideal in the Dedekind
domain B, pB has a factorization into prime idegls, pB = Pslez---PZg.
For each i, B/Pi is an extension of the field A/p whose degree, denoted
fi or f(Pi/p), is at most n. When L/K is separable, Zg » leifi = 1.
This is proved by Samuel [31]. In general Zeifi < n; see Chapter 2,
Section 4 of this text. The prime P is called ramified in L/K if it
occurs with exponent € > 1 in pB (p = Pn A), P is called unramified
in L/K if e = 1 and B/P is a separable extension of A/p; (The require-
ment of separability is felated_to the different ideal, which will
be defined in Chapter 5. Especially see exercise 17 of Chapter 5.)
Finally, P is totally pamified in L/K if pB = P". 1In Section 4, there

is a more detailed study, including proofs, of Galois extensions L/K.

3. Algebraic Numbers

An algebraic number field is a finite extension of the rational field;
such an extension is necessarily sepérable. The ring of integers in

a number field K is the integral closure of the rational integers in
K; it will ﬁsually be denoted A. Because Z is a principal ideal domain,
A has a Z basis. Such a basis is called an integral basis of K. If

“ L/K is a finite extension, then the integral closure B of A in L is

a Dedekind domain and. coincides with the ring of integers of L. B
may or may not have a basis as an A-module. If it does, this basis

is called a relative integral basis. The adjective "relative" (rela-

tive norm, relative degree, etc.) is used when the base field is a
number field; when the adjective "absolute" is used the base field
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is Q. Usual}y norms and traces are subscripted (e.g., NL/K’ trL/K)
unless the context defys misundgrstanding. The unadorned N denotes
the absolute nofm of an algebraic number or of an ideal.

The concept of discriminant is very important in algebraic number
theory. Let X;,...,x € L; the discriminant dL/K(x -..,X ) is defined
as the determinant of the matrix whose (i,j)-entry is tr /K(x Xs) s BE
the xl's are not linearly independent over K, then their dlscr1m1nant
is zero. The discriminant ideal, denoted dL/K’ is the ideal in A

generated by the elements dL/K(xi,...,xn) as the.xi range over B
(n = [L:KJ). In this book discriminants are always denoted by lower
case letters, elements by Roman, and ideals by script. The correspond-
ing upper case notations refer to the different. Keep in mind that
the discriminant belongs to the "lower" field K; differents will be
seen to belong to the "upper' field L. When the base field is Q, the
discriminant notation is usually shortened to dK(xl,...,xn) or even
d(xl,...,xn). In the absolute case, the discriminant ideal is generated
by the discriminant of an integral basis. Changing the integral basis
does not alter the generator. Consequently, for extensions of Q, one
usually uses the finer invariant dK’ which equals discriminant of any
Q- Finally, & (1,6 92
) is usually shortened to dL/K(e) or, in the absolute case,

d (8) ¢

The reader should be aware that dL/K(xl""’x ) is equal to the

integral basis of K instead of the ideal (d

square of the determinant of the matrix with (i,j)-entry o, (x ) where
0y5...,0, are the embeddlngs of L into a normal extension of K A
_simple consequence of this is the fact that if L/K is normal of odd
‘degree then dL/K(xl,...,x ) is a square in K. The iﬁportance of the
discriminant in algebraic number theory is displayed in the following

theorem which will be proved in Chapter 5.
(3.1) Theorem. Let L/K be-a finite extension of number fields. A
prime p of K has a ramified factor in L if and only if p divides dL/K'

Let I(K) denote the group of (fractional) ideals of K. Every

element of K generates a principal ideal, and these principal ideals
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constitute a subgroup of I(K) denoted P(K). The quotient I(K)/P(K)

is the ideal class group of K.

(3.2) Theorem. The ideal class group of an algebraic number field
is finite..

The group P(K) is isomorphic to the quotient K'/E(K) where E(K)
is the group of units in A (which are usually called the units of K).
The structure of E(K) is described in the following famous theorem

of Dirichlet:

(3.3) Dirichlet's Unit Theorem. Let K be an algebraic number field,

let T be the number of empeddings of K in R, and let T, be the
number of conjugate pairs of embeddings of K in €. Then E(K) is
isomorphic to the product of the (finite) group of roots of unity in

K by a free abelian group of rank T+ r{’- 1.

Theorems (3.2) and (3.3) are proyed in most books about algebraic
number theory. Samuel's exposition in [31] is especially-recommended.
Minkowski proved in [27] that if K/Q is normal, then there is a system
of T+ T, conjugate units in A of which any ry X, - 1 are linearly
independent over Z. However, his result offers no hint for deciding

whether these units generate E(K) modulo the roots of unity.

4. Theory of Ramification in Galois Extensions

Throughout this section, A is a Dedekind domain, L/K is a finite
Galois extension, and B is the integrai closure of A in L. The
"number field case" is that in which A is the ring of intégers in a
number field K. Let G = Gal(L/K) and n = [L:K].

(4.1) Proposition. Let p be a nonzero prime of A, and let Pl,...,Pg

be the primes of B above p. Then G perﬁutes {Pl""’Pg} transitively.
Proof: Let P|p. For any o € G, o(P)|o(p). As o(p) = p, it

follows that G permutes {Pi:‘i =1,...,g}. Suppose now that 2lp

and that Q is not a conjugate of P. Say pl”"’Pr are the distinct



