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Preface

This book aims to cover the topics normally included in a first course on Math-
ematical Biology for mathematics or joint honours undergraduates in the UK,
the USA and other countries. Such a course may be given in the second year
of an undergraduate degree programme, but more often appears in the third
year.

Mathematical Biology is not as hierarchical as many areas of Mathematics,
and therefore there is some flexibility over what is included. As a result the
book contains more than enough for two one-semester courses, e.g. one based
on Chapters 1 to 4, mainly using difference equations and ordinary differential
equations, and one based on Chapters 5 to 8, mainly using partial differential
equations. However there are some classic areas that are covered in almost every
course, the most obvious being population biology, often including epidemiol-
ogy, and mathematical ecology of one or two species. Population genetics is also
a classic area of application, although it does not appear in every first course. In
spatially non-uniform systems there is even more choice, but reaction-diffusion
equations are almost always included, with applications at the molecular and
population level. Some large areas have been excluded through lack of space,
such as bio-fluid dynamics and most of mathematical physiology, each of which
could fill an undergraduate textbook on its own.

To cover the whole book the student will need a background in linear alge-
bra, vector calculus, difference equations, and ordinary and partial differential
equations, although a one-semester course without vector calculus and partial
differential equations could easily be constructed. Methods only are required,
and the necessary results are collected together in appendices. Some additional
material appears on an associated website, at

http://www.springer.co.uk/britton/
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This site includes more exercises, more detailed answers to the exercises in the
book, and links to other useful sites. Some parts of it require more mathematical
background than the book itself, including stochastic processes and continuum
mechanics.

I would like to thank Jim Murray for his support and advice since my
undergraduate days. I am grateful to all the (academic and non-academic)
staff of the Department of Mathematical Sciences at the University of Bath for
making this a genial place to work, the past and present members of the Centre
for Mathematical Biology at the University of Bath for stimulating discussions,
my students for their feedback on the lecture notes from which this book was
developed, and Springer Verlag. Finally I would like to thank Suzy and Rachel
for their love and support.
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1

Single Species Population Dynamics

— The first goal of this chapter is to understand how the rate of growth or
decay of an isolated population is determined. This depends on modelling
birth and death processes.

— Models of birth and death processes have a long history. Complicating factors
are the dependence of birth and death rates on the age structure of the
population, the effects of competition for resources, and delays in responding
to environmental changes.

— We are interested in controlling as well as understanding population dynam-
ics, and we shall discuss management strategies for fisheries.

— Spatial effects are increasingly being seen as important in fields such as con-
servation biology, and we shall introduce a simple method for investigating
these.

1.1 Introduction

Attempts to understand population processes date back to the Middle Ages
and earlier. Often, human populations were the focus of interest. Sir William
Petty in about 1300 composed a table “shewing how the People might have
doubled in the several ages of the World”, starting with 8 people one year after
the Flood, 2700 years before the birth of Christ, and doubling at first every ten
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years but then at successively longer intervals of time to arrive at 320 million
(not a bad estimate) by the year 1300. Real data show that doubling times were
about 1000 years over this period of time, but more importantly that they have
become successively shorter to reach about 35 years in the later 20th century.
The rate of population growth has therefore been faster than exponential, as
we can see in Figure 1.1.

R World population
10
z
S
E
~5’103 Figure 1.1 World human pop-
g ulation growth over the last 2000
g years. Exponential growth would give
a straight line on this semilogarith-
2 .
%% 500 1000 1500 2000 mic plot.
year

Alternatively, we can think of this curve as exponential growth, but with an
exponent that has (in general) increased over time. Population processes with
parameters that change over time are called non-stationary; for simplicity, we
shall restrict attention almost everywhere to stationary processes.

Human populations are exceptional in exhibiting exponential or faster
growth over such a long time period. Most biological populations, except when
colonising virgin territory, are regulated by competition for limiting resources
or by other means. We shall look at population dynamics first in the absence
of regulation, and then including regulatory effects.

1.2 Linear and Nonlinear First Order Discrete
Time Models

Let us assume that the size N, of a population at time n completely determines
its size at time n+ 1. The use of discrete time is sometimes rather artificial, but
it may be appropriate if the population is censused at intervals, so that data for
births and deaths are only available for discrete time periods. Such a model is
sometimes called a metered model, especially when used in the fisheries context.
Consider a continuously breeding population, such as a human population,
censused at intervals. Let the probability of any given individual dying between
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censuses (the per capita mortality) be d, and let the average number of births
to any given individual in the same time period (the per capita production or
reproduction) be b. Then the total number of deaths is dV,,, the total number of
births bV, and so Np+1 = (1 +b—d)N,, = AN, say. Alternatively, a discrete
time model may be used for creatures that reproduce at a specific time of year,
the breeding season, as we shall see in the next subsection.

The simplest first order model is therefore linear,

Nn+l :/\Nn, (121)

known as the Malthusian equation in discrete time. The parameter ) is called
the (net) growth ratio. If the process is stationary, A constant, its solution with
initial condition Ny given is N, = NoA™, which is geometrically growing with
growth ratio A if A > 1. This is known as Malthusian growth. In 1798, Thomas
Malthus published an Essay on the Principle of Population in which he stated
that “population, when unchecked, increases in a geometric ratio”. He went on
to say that subsistence increases in an arithmetic ratio, and to discuss the dire
consequences of this difference. The phrase “when unchecked” is crucial, and
Malthus recognised that such checks were constantly in place. However, the
unchecked growth equation (1.2.1) and the equivalent equation in continuous
time have come to bear his name.

1.2.1 The Biology of Insect Population Dynamics

Insects often have well-defined annual non-overlapping generations. For exam-
ple, adults may lay eggs in spring or summer, and then die. The eggs hatch
out into larvae, which eat and grow and then overwinter in a pupal stage. The
adults emerge from the pupae the following spring. We have to decide at what
time of year to take a census. Let us count adults at the breeding season, and
let the average number of eggs laid by each adult be Ry. The parameter Ry
is the basic reproductive ratio, defined to be the average number of offspring
produced over a lifetime, all of these offspring in this case being produced at
the same time. It is clear that this is a crucial parameter, and it will recur many
times in this book. It is often used to represent not the total number of offspring
produced, but the number that would survive to breed in the absence of the
particular effect that is being studied. In an unchecked insect population with
no premature mortality, Equation (1.2.1) therefore applies, with A = 1+ b—d,
b= Ry and d = 1, so that the growth ratio A is the basic reproductive ratio
Ry.

In a real insect population, some of the R, offspring produced by each adult
will not survive to be counted as adults in the next census. Let us assume that
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a fraction S(NV) do survive, this survival rate depending on N. The Malthusian

equation is replaced by
Npt1 = RoS(N,)N,, (1.2.2)

which may alternatively be written
Nn+l = NnF(Nn) = f(Nn) (123)

Here F(N) is the per capita production and f(N) the production of a population
of size N. The model is called density-dependent if the per capita production F
depends on N, which we assume to be the case. Density-dependent effects can
also occur if the per capita fertility rather than the per capita survival depends
on the density.

The model may be criticised for being deterministic, and for taking no ac-
count of predators, prey, or competing species, or of abiotic influences such as
the weather. It assumes that population size is regulated by density-dependent
factors. The question of whether density-dependent or density-independent fac-
tors are more important was a source of great controversy in the middle decades
of the last century, although it is clear that if the population is regulated,
density-dependent factors must have a role to play. However, the purpose of
models of this form is to investigate whether simple assumptions on how the
population is regulated are supported by the data.

1.2.2 A Model for Insect Population Dynamics with
Competition

We shall test the hypothesis that insect populations are regulated by intraspe-
cific (within-species) competition for some resource which is in short supply.
Typical resources are food and space. We shall interpret Ry as the number of
adults each adult in one generation would produce in the subsequent generation
in the absence of competition. For simplicity in the exposition we shall assume
that competition affects survival rather than fertility, and discuss it in terms
of the survival fraction S or the per capita production F. There are various
idealised forms of intraspecific competition that can be considered, defined as
follows.

— No competition: then S(N) =1 for all N.

— Contest competition: here there is a finite number of units of resource (these
could, for example, be a fixed number of safe refuges). Each individual
which obtains one of these units of resource survives to breed, and produces



