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Introduction

Try extracting harmony contained in chaos

Bispectrum-based techniques of signal processing and higher-order statistical anal-
ysis [1-4] have attracted the attention of many researchers in the 1980s of the pre-
vious century as prospective addition and sometimes as an alternative tool to com-
mon second-order spectral-correlation analysis widely spread for different applica-
tions like radar, sonar, pattern recognition, digital communications, nondestructive
control, biomedical engineering, and so on. A. W. Lohmann and B. Wirnitzer (see,

e.g., [1]) were one of the first researchers who addressed optical and astronomical ap-

plications of triple correlation and bispectrum. Their pioneer investigations performed

in astronomy stimulated other applications like sonars, biomedical engineering, non-
destructive control, radars, communications, image processing, and so on, that have
been generalized in [2] by C. L. Nikias and M. R. Raghuveer. Theoretical aspects of bis-

pectrum-based signal processing were summarized by J. M. Mendel in [3] and by C. L.

Nikias; A. P. Petropulu in their book [4]. Recently, the amount of publications dedi-

cated to higher-order statistics and bispectral analysis has increased radically.

For almost twenty years the researchers were basically dealing with the theoret-
ical aspects of triple correlation and bispectrum estimation. This peculiarity can be
explained by the necessity of extensive computations for processing and storage of
multidimensional data required for higher-order statistical analysis. Lately, with in-
creased computing power, the interest in practical applications of bispectrum-based
signal processing has increased. This is explained with known inherent advantages
of bispectrum that radically differ it from common second-order power spectrum esti-
mation. These advantages are as follows: possihility to extract phase-coupled contri-
butions contained in processed signals, immunity to zero mean noise with symmetric
probability density function, random signal shift and jitter invariance properties, as
well as preservation of phase information contained in processed data.

However, many both theoretical and practical questions yet remain unclear. They
are;

- Thestatistical properties of noisy bispectrum and triple correlation estimates have
not been analyzed in detail; effective ways for their improvement have not been
thoroughly studied yet.

- The phase wrapping problem still exists in signal processing and it influences the
quality of bispectrum-based signal waveform restoration.

- Recently, a lot of attention has been paid to the problem of bispecrum-based 1-
D signal processing; however, it is natural to expect promising results in case of
bispectrum-based 2-D noisy and jittery image processing and digital image recon-
struction.
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— The problem of detection of deterministic signal embedded in noise by using
novel higher-order test statistics formed at the matched filter is of particular
interest for digital communications and radar applications.

— Both sea and vegetation clutter suppression in radar applications by using bispec-
tral-based signal processing can provide improving target recognition and classi-
fication performance.

— Bispectrum-based approach is able to extract the phase coupling contribution
contained in nonstationary and multicomponent radar signals backscattered by
moving targets observed in vegetation clutter. This will make it possible to obtain
novel information features for better radar target recognition and classification.

— The performance of bispectrum-based signal processing is not thoroughly investi-
gated for such real-life situations like small input signal-to-noise ratios (SNR) and
a small number of observed realizations.

These problems are addressed and discussed below in this book.

The goal of the book is the theoretical and experimental study of bispectrum-
based techniques and algorithms developed for digital processing of signals and im-
ages. The basic application is radars of different types intended for detection and au-
tomatic recognition of aerial, ground moving and naval targets, surveillance in veg-
etation and sea clutter, Other applications like digital wireless communications and
digital image processing are considered as well.

The book contains four Chapters.

Chapter 1 gives theoretical background and deals with analysis of basic properties
of bispectrum and triple correlation function and accuracy of bispectrum estimation.
Some particular aspects like phase unwrapping are discussed. Statistical study of bis-
pectral estimates contaminated by interferences is performed and extreme accuracy
is analytically defined by Cramér—Rao criterion.

Chapter 2is devoted to combined bispectrum-filtering techniques that exploit pos-
itive features of bispectrum and filtering, linear and nonlinear, nonadaptive and adap-
tive. Non-Gaussianity and nonstationarity of fluctuations observed in bispectral do-
main induced by leakage of input noise is demonstrated. This serves the purpose of
designing novel adaptive filters suitable for this application.

Reconstruction of images distorted by jitter and additive noise is considered in
Chapter 3. Removal of jitter observed with influence of mixture of additive Gaussian
and impulsive noise is studied. It is shown that additive predistortions provide both
removal of phase ambiguity and jitter by using bispectrum-based image reconstruc-
tion. Approach based on multiplicative predistortions allows decreasing distortions in
restored images as compared with additive predistortions. Optimal additive and mul-
tiplicative predistortion function parameters are evaluated and analyzed.

A novel bispectral technique for signal detection and discrimination is suggested
in Chapter 4 by using test detection statistics computed in the form of peak values of
the third-order moment functions. A novel encoding concept using frequency diver-
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sity strategy and bispectrum-based signal processing are suggested for wireless com-
munication systems. According to the proposed approach, binary data are transmit-
ted by using a pair of mutually orthogonal triplet-signals contained phase-coupled
frequency tones. Novel third-order test detection statistics evaluated in the form of
triplet-signal bimagnitude peaks are suggested for detection and discrimination of
received triplet-signals in noisy and fading communication radio links. Radar appli-
cations of bispectrum are considered in Chapter 4. It contains experimental results
for coastal naval, ground surveillance and aerial target recognition and classification
radars.

Contributions of the authors are represented as follows. A. V. Totsky is contributed
toall Chapters of the book. A. A. Zelensky is contributed to the sub-Chapters 1.1, 1.2, 2.1,
2.2, 2.4,3.1and 4.2. V. F. Kravchenko is contributed to the sub-Chapter 1.4.
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1 General properties of bispectrum-based digital
signal processing

1.1 General properties of cumulant and moment functions

Common power or energy spectral density estimation is a well-known and widely
spread tool for random signal analysis. Ensemble averaged Fourier magnitude spec-
trum density does not contain any information about behavior of a centered random
process in the frequency domain since the spectral components are statistically inde-
pendent in different observed realizations. In this case, the energy distribution of sta-
tistically independent spectral components must be estimated since the energy con-
tent does not depend on the phase relationships for separate frequencies. Indeed, for
the processes containing independent spectral components, the energy spectrum es-
timate is the exhaustive characteristic conventionally used in spectral analysis of such
processes.

In several practical applications of signal processing, an analyzed process can
contain phase coupled spectral contributions. Study of these spectral correlation re-
lationships can give us very useful and important information for correct understand-
ing, analysis and description of physical effects that cause a given process. Note that
such information about phase coupling is irretrievably lost in common energy spec-
trum estimates.

Cumulant function and cumulant spectrum estimation can serve as a very useful
and promising tool for signal analysis and processing. Cumulant-based approach has
several important and attractive benefits as compared with energy spectrum estima-
tion. These benefits are listed and described below.

First, consider mathematical description of cumulant spectra for a real-valued sta-
tionary and discrete-valued process given by the time series as {x(i),i = 0,1,2,...}.
The joint cumulants cfr')( T)> T e Tp_y) Of M order can be defined as

R (1.1.1)

.
o s [0 InOw,, w,,...,w,)
cxr = Cx(Tls Tyser s Tr—l) = _]r [ - : ——

0w, 0w,. . .0w, ]wl B——

where @(w,, w,, ..., w,) = (exp[j(w, x, +w,x,+...+w,x,)]), is the multidimensional
characteristic function; w,, w,,.. ., w, are the angular frequencies; j = vV-1; (...),
denotes ensemble averaging procedure; and 7,, 7,, .. ., T,_, are the time shifts.

The cumulants (1.1.1) serve as the characteristic of the probability distribution and
they can be represented by the following coefficients in Taylor series for the function
In ®(w) in the neighborhood of the point of origin

oo
InOw) = ) *(jw) . (11.2)
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The joint moments m, (1, 7,,...,7,_;), defined for a stationary process {x(i),i =
0,1,2,...} differ from the cumulants (1.1.1) as follows

M = my (T, Ty oo 0 T,y) = (X@)x( + 1)X0 + 7). X0 +7,)),
ok 0O(w,, w,, ..., w,)

9,00,. . 0w, (113)

W) =w,=..=w,=0

The joint moments (1.1.3) can be defined by the expansion coefficients of the charac-
teristic function ®(w) in Taylor series in the neighborhood of the point of origin as

00 L,.(r)

Ow) =1+ (jw)" . 114
() Z = (je) (1.1.4)
The relationships between the joint cumulants (1.1.1) and the joint moments (1.1.3) in
the origin under assumptionthatr, = 7, = ...7r,_; = 0 can be written by the following
formulas

W _ W) _ s
¢, =m, = (x()) ,

C’(‘z) =m® - (mil))z i

G) _ .3 ), (2) (13
¢, =m, —3m . ‘m, +2(mx) ;

¢ = mff) -3 (mff))2 - 4mi”mf) + 12 (mﬁc”)2 mf) -6 (mil))4. (1.1.5)

X

For the case of a zero-mean process, that is, for mf(” = (x(i)) = 0, the formulas (1.1.5)
transform to the following structure

cf‘”=m§c”=0,
2 2 N2 _ 2
? =m? = (x(i))" = o?,

C(3) - m(x3) = <x3(i)> ,

W= m® — 3(m?)? = (x(i)) - 3(0?)’, (1.0.6)

X

where o is the variance of a process under consideration.

Let us consider a real-valued discrete and zero-mean process {x(i),i =0, 1, 2,...,
I -1}, (x(i)) = 0. The relationships between the moment and cumulant functions for
this zero-mean process can be described by the following formulas

(x()x( + k) = mP(k) = cP(k), (1.17a)
(x()x(i + k)x(i + 1)) = mP (k1) = Pk, 1), (1.1.7b)

(i) + R)x(i + DxG + m)) = mP (e Lm) = <Pk Lm) + <P R)cDm - )
+¢2 (67 m =k + e (- k), (1170)

where k, | and m are the shift indices.
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The formula (1.1.7a) describes the relationship between the second-order statistics
and it defines conventional autocorrelation function. Note that second-order moment
and cumulant functions are equal to each other in this case.

The formula (1.1.7b) describes the relationship between the third-order statistics
and it defines triple or third-order autocorrelation function. It should be noted that the
third-order moments and cumulants are equal to each other in this case.

According to the formula (1.1.7c) defining the relationship existing between the
fourth-order statistics, the fourth-order moment function is not equal to the fourth-
order cumulant function.

Spectral density of the ™ order called as polispectrum or cumulant spectrum
C,(w,, wy,..., w,_;) of a process {x(i),i = 0,1,2,...,] — 1} can be defined by
the following multidimensional Fourier transform of the " order cumulant
Pl (S I -1

(r)
er (wly wz:---) r-l’)
+00 +00 (
= Z Z (1, 0 Ty expl—jl@, 7y + @7, + ..+ @, T,_)]

;=~00 T, =-00

(1.1.8)

The generalized formula (1.1.8) allows to define the energy spectrum P, (w) (for r = 2),
the bispectrum B, (w,, w,) (for r = 3) and the trispectrum T, (w,, w,, w;) (for r = 4),
respectively, in the forms:

P(w)= Y c2()exp[-j(wh], (1.1.9a)
Bwpw)= Y Y (,h)exp[-jlwl, + w,h)], (1.1.9b)

I =-00 l=—00

+00

+00  +00
Tw,wpw)= Y Y Y ¢, L,L)expl-jwl, + w,l, + wyly)]. (119¢)

l,=—00 l,=—00 ly=—00

The expressions (1.1.9a-b) contain the cumulant functions whose properties are
interesting and worth considering in detail.
(1) Ifx;,i=12,..,K is a sequence of random variablesand @; = 1,2,...,K are
some constant values, then

K
(o Xy, @ X5 o 0 oy R Xg) = (n a,-) c(%15 X535+ . s Xg) (1.1.10)

i=1
(2) Permutation property for random variables
C(xl, xz, ‘e .xK) = C(x“, x,-z, T x,-K) ) (1-1-11)

where (i,,1,,. .., ig) is the permutation index (1, 2,... ., K).
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(3) Additivity property of the cumulants for their arguments
c(x+9,2,25..52g) =€(%,2),23,..2g) + (¥, 2),25,..52k)»  (11.12)

which signifies that the cumulant of the sum of arguments is equal to the sum of
the cumulants of the separate arguments.
(4) If @ is a constant value then

c(@+ X1, X550 0 Xg) = (X, %55 000 Xg) - (1.1.13)

(5) In the case when the random variables x;,i = 1,2,..,Kand y;,i = 1,2,..,K
are independent, we have

c(X; + Yis Xy + Voo X + Vi) = C(X15 %550 0 5 X)) + €(V1s Voo s Vi) -+ (11.14)

Assume that an observed process is z(i) = x(i) + n(i), i = 1,2,...,K, and x(i) and
n(i) are the independent processes. According to the property (1.1.14), one can obtain

O b s ale) = L ol ) v s s i) (1.1.15)

If one of the process, for example, n(7) is Gaussian, then under condition of K > 3,
(1, 1,,...,1x_,) = 0 we obtain

Oyl ) =B L, 1) (1.1.16)

The latter expression (1.1.16) demonstrates important insensitivity property to the
additive Gaussian noise valid for the cumulants the order of which is equal or more
than three. From the practical point of view of signal processing in additive Gaussian
noise environment, the cumulant estimates permit to separate non-Gaussian signal
from additive Gaussian noise and, hence, to increase signal-to-noise (SNR) ratio.

Below, we will pay attention to the third-order statistics from the point of view
of their application in digital signal and image processing. For this purpose, first, we
will consider the general properties of triple correlation and bispectrum and the tech-
niques used for their estimation.

1.2 Triple correlation function and bispectrum

One of the main motivations referred to using bispectrum-based signal processing
is the following. Bispectrum density estimate or third-order cumulant spectrum es-
timate, opposite to the energy spectrum estimate, not only allows to describe the sta-
tistical properties of an observed process more correctly and completely, but also to ex-
tract novel information features such as spectral component correlation relationships.
Moreover, bispectrum estimate allows extracting the phase relationships existing be-
tween the spectral components contained in the process under study. Therefore, the
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main difference of bispectrum from energy spectrum is in preservation of phase infor-
mation contained in a process and the possibility to recover this important informa-
tion. Already, this promising peculiarity of bispectrum has contributed to wide usage
of the bispectrum analysis and bispectral estimation techniques for digital signal pro-
cessing. Permanent growth in the interest in bispectrum analysis is accompanied by
appearance of a great number of publications.

Consider the benefits of bispectrum analysis more in detail. One of the most
promising bispectrum property usually used for recovering a signal embedded in
Gaussian noise, is the tendency to zero the bispectrum of an interference having a
symmetrical probability density function (PDF) . This property provides robustness of
the bispectrum-based filtering techniques regarding additive Gaussian interference in
radar [5-8], astronomy [9-11], underwater acoustics [12-14], and biomedical [15, 16]
signal processing systems, as well as in digital image processing systems [17-20].

Bispectral analysis can serve as quite a sensitive and precise tool permitting to
define and measure the deviation of the observed process from Gaussian distribution,
that is, to estimate non-Gaussianity. This property seems to be very useful in noisy-
like processes in machine diagnostics systems [21], underwater acoustic systems [12],
nondestructive monitoring [22], and biomedical diagnostics [16].

Let us consider the properties of bispectrum for a real-valued stationary discrete
process {x(""(i)} given by finite number of samplesi = 0, 1,2,...,I — 1 and observed
with a finite sequence of m = 1, 2, ..., M realizations.

Common autocorrelation discrete function R (k) belonging to the class of second-
order statistics can be written as a function of a single variable

I-1
R0 = (Y [x"0-E] [+"G+0-E]) . (1.21)
i=0 0

where k = —I + 1,...,I — 1 is the temporal or spatial shift index; (...), denotes
ensemble averaging assuming that number of accumulated realizations tends to in-
finity, that is, M — oo; E = ((1/I) Z,tol x("')(i))o0 is the mean value; R, (0) = ai =
(Y50 [x") (i) — E]*), is the variance.

Autocorrelation function R, (k) (1.2.1) has the following symmetry property

R.(k) = R (k). (1.2.2)

According to the Wiener—Khinchin theorem, the spectral density P, (p) can be defined
in the form of the following discrete direct Fourier transform (DFT)

k=+00

P(p)= ) R,(k)exp(-j2mkp), (1.2.3)

k=-c0
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or by
B.(p) = (X" (X" (p))_ (1.2.4)

where p = —I + 1,...,I + 1 is the frequency sample index; X" (p) = ¥;-; x™ (i)

exp(—j2mip) is the complex-valued DFT computed for m™ arbitrary realization; * de-
notes complex conjugation.

It should be taken into account one more time that Fourier phase spectrum infor-
mation is irretrievably lost in the spectral density (1.2.4).

Own autocorrelation function corresponds to each concrete signal, but not in-
versely. It is impossible to restore signal shape by autocorrelation function as it is im-
possible to restore the shape of some plane figure by its known square.

Triple autocorrelation function (TAF) R, (k, I) represents the third-order statistic.
TAF is a function of two variables and it can be represented in the discrete form as

I-1
RkD = Y [x"6) - E] [ +k) - E] [x"G+D-E]) . @29
i=0 00

wherek = -1+1,..,I-1andl = -I+1,...,I—1 are the independent shift indices.
Note that the TAF (1.2.5) possesses the following symmetry property [2]

R.(k,]) =R (L,k) = R,(I-k—k) = R (k- 1,-I) = R (-k, 1 - k). (1.2.6)

According to the definitions given in [1, 2], bispectrum is the 2-D DFT of TAF. Unlike
the real-valued spectral density (1.2.3) and (1.2.4), bispectrum (or bispectral density)
is the complex-valued function B, (p, q) of two independent frequencies p and q that
can be written as the following 2-D discrete DFT of TAF (1.2.5)

I-1 I-1
Bipa)= Y Y RkDexp[-j2nikp+Ig)], (1.2.7a)
k==I+1I=-I1+1

or as

BX(P’ q) = <X(m)(P)X(m)(q)Xt(m)(P + q)>m - <X(m)(P)X(m)(q)X(m) (_p _ q)>oo ,

(1.2.7b)
where Bx(p, q) = |Bx(p, )| expljy.(p, 9)1; IBx(p, q)| and y,(p, q) are the magnitude
bispectrum (bimagnitude) and phase bispectrum (biphase), respectively; p = -I +
l,..,I-1landgq = -I +1,...,I — 1are the frequency indices.

Comparing the spectral (1.2.4) and bispectral (1.2.7b) densities allows noting that
spectral density P,(p) is the ensemble averaging performed for the multiplication of
two complex conjugated functions corresponding to the same frequency p and bis-
pectral density Bx( P»q) is the ensemble averaging of triple product of three complex-
valued functions related to three different frequencies: p, gand p + q.



