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Preface

Functional polymers are one of the most promising materials finding tremendous application

in almost all the areas of science and technology, ranging from industrial to medical domains.
With the emergence of new and newer synthetic strategies in chemical and allied sciences,
specialty polymers of diversified structures have been designed with tailored properties and
applications. The great ability to keep a precise control over the size, shape, molecular weight,
functionalities, and physical and chemical properties of resulting polymers has enabled polymer
scientists to fabricate materials of own choice, desired properties, and intended end uses. This
book attempts to deliver a comprehensive account of various polymer-based materials that are
being intensively used as biomaterials for various applications pertaining to human body.

This book consists of nine chapters that encompass almost entire range of applications of
polymers in human body. Chapter 1 highlights the basic criteria of materials to be coined as
biomaterials for dental, orthopedic, drug delivery, wound dressing, tissue engineering, ocular,
and cardiovascular applications. Chapter 2 focuses on the use of polymers for dental applications.
This chapter emphasizes the required mechanical properties of a polymer, which are essential
for dental applications. It also gives an overview of different types of dental implants and various
kinds of polymers being employed in dentistry. Chapter 3 is concerned with the use of polymer
materials and nanocomposites that find applications as orthopedic materials. The chapter also
covers metal- and ceramic-based hybrid materials, which are in current use in orthopedic surgery.

Chapter 4 describes the use of smart polymers in drug delivery applications. A variety of
polymers and other macromolecular entities that have been used for designing smart drug
delivery systems have also been discussed in this chapter. Chapter 5 focuses on the use of poly-
mers as wound-dressing materials. This chapter also covers classification of wounds, type of
wound dressings, naturally occurring polymers in wound dressing, etc. While Chapter 6 focuses
on use of smart polymers in tissue-engineering applications and Chapter 7 pertains to ocular
implants. Chapter 8 assesses the role of polymers in cardiovascular implantation and discusses
how materials such as polymers, metals, and ceramics are currently being used for cardiovascu-
lar applications. Finally, Chapter 9 provides an authentic and conclusive information about the
market scenario of biomaterial-based devises.

We are confident that this book will be useful for students and research scholars from different
disciplines of science, engineering, and technology.
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1 SMART BIOMATERIALS IN BIOMEDICAL APPLICATIONS

1 Smart Biomaterials in Biomedical Applications

1.1 INTRODUCTION

Time and time again humanity is faced with a unifying global crisis (widespread and insidious dis-
ease, harsh treatment of patients, etc.) that has inspired the researcher to create a biological molecu-
lar machine, so-called biomaterial, with tailored structures and properties that operate with the
same efficiency and complexity as biological machines by uniting supramolecular chemistry, mecha-
nostereochemistry, and nanotechnology, for the common good. Functional polymeric materials are
essential components of a variety of biological and biomedical applications including drug delivery,
tissue engineering, and medical imaging [1-4] as every day thousands of surgical procedures are
performed to replace or repair tissue that has been damaged through disease or trauma. Despite
the long history of biomedical engineering, polymers used in these applications have historically
been polydisperse, with limited control over functionality and architecture [4,5]. In early stages of
development, biomaterial selection focused on inertness and on mimicking the physical properties
of the damaged tissue. Later development included design to illicit a specific biological response [6].
Meanwhile, polymer chemistry has experienced increased sophistication in terms of what can be
controlled. “Smart” polymers with stimuli sensitivity, new architectures, and greater control over
molecular weight (MW) and molecular weight distribution (MWD) have driven polymer research
over the last 10-15 years [7-10]. In this context, it is logical that advanced synthetic techniques that
can construct precision materials will lead to new applications and uses in biomedical engineering.

Biomaterials can be defined as any nonviable synthetic materials that become a part of the body
either temporarily or permanently to replace, augment, or restore the function of a body tissue
and are continuously or intermittently in contact with body fluids in a safe, reliably economically,
and physiologically acceptable manner; they can be used for any period of time in contact with
living tissue, to improve human health and they play a central role in extracorporeal devices, from
contact lenses to kidney dialyzers, and are essential components of implants, from vascular grafts
to cardiac pacemakers. A variety of devices and materials are used in the treatment of disease or
injury. Common examples include suture needles, plates, teeth fillings, etc. However, this defini-
tion excludes surgical or dental instruments as they are exposed to body fluids, but do not replace
or augment the function of a human tissue [11].

In the last decade, driven by the needs from engineering applications, various new materials
such as metal and semiconductor nanocrystals, encoded nanoparticles (nanoparticles bearing
biochemical information on their surfaces), functional nanoparticles (nanoparticles engineered
to perform specific physical and/or chemical functions), functional magnetic nanostructures
(nanoparticles where the release of drugs and/or biomolecules is triggered by the application of
an external magnetic field), stimuli-responsive nanocarriers (designed to react on certain stimuli
such as pH, temperature, redox potential, enzymes, light, and ultrasound), and so on have been
developed for enhanced performance and/or new functions due to their optical, electrical, and
magnetic properties, as they can be used to produce biologically relevant transformations [12,13].

Among them, stimuli-responsive polymer materials have gained much interest in recent years
due to their ability to sense and react to environmental conditions or respond to a particular
stimulus such as heat (thermo-responsive materials), stress/pressure (mechano-responsive materi-
als), electrical current/voltage (electro-responsive materials), magnetic field (magneto-responsive
materials), pH change/solvent/moisture (chemo-responsive materials), and light (photo-responsive
materials) by means of altering their physical and/or chemical properties. Various smart materials
have already existed, and are being researched extensively in biomaterials, bioinspired materials,
functional nanomaterials, sensors, actuators, etc. [14].

1.2 SCAFFOLD REQUIREMENTS

Recently, numerous biomaterials have been used in biomedical devices in attempts to regenerate
different tissues and organs in the body. The tissue response to an implant depends on a myriad
of factors ranging from the chemical, physical, and biological properties of the materials to the
shape and structure of the implant. Regardless of the tissue type, the ideal material or material
combination should exhibit the following properties:

1. Biocompatibility: Biocompatibility can be defined as a dynamic two-way process that involves
the time-dependent effects of the host on the material and the material on the host. The
performance of a biomaterial should not be affected by the host and the host should not be
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negatively affected by the implanted biomaterials. No clear, absolute definition of biocompat-
ibility exists yet, mainly due to the fact that the biomaterial area is still evolving. It is the very
first criterion of any polymeric device that is used in the regeneration of any type of tissue,
that is, the chemical composition of device must be biocompatible to avoid adverse tissue
reactions or must elicit a negligible immune reaction in order to prevent it, causing such a
severe inflammatory response that it might reduce healing or cause rejection by the body
after implantation.

. Biodegradability: Biodegradation is an important property for biomaterials which refers to the
process of break down into small molecular fragments by nature, that is, the rate of break-
down mediated by biological processes (e.g., the cleavage of hydrolytically or enzymatically
sensitive bonds in the polymer leading to polymer erosion) inside the body that cause a
gradual breakdown of the material [15]. The scaffolds that are used as implants must be bio-
degradable so as to allow cells to produce their own extracellular matrix [16]. Therefore, the
implanted material should have appropriate permeability and processibility for the intended
application acceptable. It should have acceptable shelf life to match the healing or regenera-
tion process, should not evoke a sustained inflammatory or toxic response upon implanta-
tion in the body, as well as the degradation products should be nontoxic, and be able to get
metabolized and cleared from the body. The chemical, physical, mechanical, and biological
properties of a biodegradable material will vary with time, and degradation products can be
produced that have different levels of tissue compatibility compared to the starting parent
material.

. Mechanical properties: The material should have appropriate mechanical properties consistent
with the anatomical site into which it is to be implanted and, from a practical perspective,

it must be strong enough to allow surgical handling during implantation for the indicated
application and the variation in mechanical properties with degradation should be compat-
ible with the healing or regeneration process. In attempting to engineer bone or cartilage
tissues, the implanted scaffold must have sufficient acceptable strength to sustain cyclic
loading endured by the joint, a low modulus to minimize bone resorption, high wear resis-
tance to minimize wear-debris generation, as well as mechanical integrity to function from
the time of implantation to the completion of the remodeling process [17]. In orthopedic
applications, a patient’s age must be considered for designing scaffold as the healing process
rate differs in both young and elderly cases. In young individuals, fractures normally heal
within six month and acquire weight-bearing capacity in 6 months but complete mechani-
cal integrity develop after 1 year. In elderly patients, the rate is very slow than young
individual.

. Scaffold architecture: The interaction between implanted materials and blood depends on the
composition of device and blood, device geometry (surface topography and high surface area
provide additional available sites for protein adsorption, thereby enhancing the cell/material
interaction), surface charge (anionic or cationic can influence plasma protein adsorption on the
device surface), ratio of hydrophilicity and hydrophobicity (hydrophilic surfaces tend to adsorb
fewer amounts of proteins than hydrophobic ones due to strong attraction between water mol-
ecules and the polymeric material), and local condition of flow of blood. The hemocompatibility
of materials can be improved by surface modification, that is, by creating a surface that shows
minimum nonspecific interactions with biological materials such as proteins and blood cells
[18-20]. Therefore, the scaffold architecture is also one important factor that must be accounted
for before manufacturing implantable materials. Materials must have an interconnected pore
structure and high porosity. Its pores must be large enough to allow cells to migrate into the
structure, where they eventually bound to the ligands within the scaffold, but are small enough
to establish a sufficiently high specific surface, leading to a minimal ligand density to allow effi-
cient binding of a the critical number of cells to the scaffold. They ensure cellular penetration
and adequate diffusion of nutrients to cells within the construct and to the extracellular matrix
formed by these cells as well as to allow the diffusion of waste products out of the scaffold, and
the products of scaffold degradation should be able to exit the body without interference with
other organs and surrounding tissues [21-26].

. Manufacturing technology: The main objective of manufacturing technology must be to develop
cost effective and clinically viable implant materials [27]. It must be scalable, efficiently devel-
oped and delivered, and made available to the clinician.
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6. Choice of materials: The final criterion for scaffolds in tissue engineering, and the one on which
all of the criteria listed above are dependent, is the choice of biomaterial from which the scaf-
fold should be fabricated.

1.3 TYPES OF SMART POLYMERIC MATERIALS

Polymers such as proteins, polysaccharides, and nucleic acids are present as basic components
in living organic systems that respond to its environment from the molecular to the macroscopic
level due to their ability to adopt conformations according to the conditions in their surrounding
environment, because response to stimulus is a basic process of living systems for maintaining
normal function as well as fighting disease [28]. Similar adaptive behavior can be imparted to
synthetic (co)polymers by incorporating multiple copies of functional groups such that their utility
goes beyond providing structural support to allow active participation in a dynamic sense [29].
These examples have inspired scientists to fabricate “smart” materials that respond to light, pH,
temperature, mechanical stress, or molecular stimuli. In the rapidly changing scientific world,
scientists and engineers are designing biomolecule mimic materials as opportunities for treating
and curing disease, and are leading to a variety of approaches for relieving suffering and prolong-
ing life [30]. In recent years, the importance of smart polymers has increased significantly in the
area of biotechnology, medicine, and engineering because of their response to internal and exter-
nal stimuli as well as their shape, surface characteristics, solubility, viscoelasticity, transparency,
conductivity, etc. can be controlled by modifying the structure and organization of the polymer
chains [31]. Due to their own special physical or chemical properties and applications in various
areas, these polymers are coined as “stimuli-responsive polymers” [32] or “smart polymers (SP)”
[33,34] or “intelligent polymers” [35] or “environmentally sensitive” polymers [36] (Figure 1.1).
Smart materials can be classified into different ways on the basis of types of polymers, external
stimuli, and their given response (Figure 1.2). Some important types of smart polymeric materials
have been discussed in the following sections.

1.3.1 Classification on the Basis of Physical Form

Smart polymers can be classified into three categories such as linear free chains in solution,
covalently cross-linked gels and reversible or physical gels, and chain-adsorbed or surface-grafted
according to their physical forms (Figure 1.3).

1. Linear free chains in solution: In an aqueous solution, if the macromolecular chains are linear and
solubilized, the solution will change from monophasic to biphasic due to polymer precipita-
tion and the polymer undergoes a reversible collapse after an external stimulus is applied. This
polymer phase transition is controlled by a delicate balance under hydrophobic and hydrophilic
conditions and can be achieved either due to the reduction in the number of hydrogen bonds
that the polymer forms with water or because of the neutralization of the electric charges that
are present on the polymeric network. For example, aqueous solutions of thermo-responsive
polymers show phase transition at temperature above their lower critical solution temperature
(LCST) that is the temperature at which the phase transition occurs, also called demixtion
denoted as T, or the critical point (CP). Soluble pH (such as Eudragit S-100 [copolymer of meth-
ylmethacrylate and methacrylic acid] and the natural polymer, chitosan [deacetylated chitin])
and temperature-responsive polymers (poly-N-isopropylacrylamide) that overcome transition
at physiological conditions (37°C and/or physiological pH) have been proposed as minimally
invasive injectable systems for implant or scaffold useful for the drug delivery system (DDS) or
tissue engineering applications [37,38].

2. Covalently cross-linked gels and reversible or physical gels: They can be either microscopic or mac-
roscopic networks that are highly swollen material whose swelling behavior is controlled by
environmental conditions. They do not dissolve in an aqueous environment due to the presence
of extensive infinite crosslinking between polymeric networks. The gel-phase transition of such
polymeric networks between a collapsed and an expanded state occurs due to chain reorgani-
zation under external stimuli. These phenomena are reversed when the stimulus is reversed,
although the rate of reversion often is slower when the polymer has to redissolve or the gel has
to reswell in an aqueous medium. Such systems are very useful in pulse DDSs [36].

3. Chain-adsorbed or surface-grafted form: These types of polymers either reversibly swell or collapse
on the surface under external stimuli due to the conversion of the interface from hydrophilic to
hydrophobic and vice versa. They may show other types of transitions in comparison to soluble
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polymers due to change in surface hydrophobicity attributable to changing temperature, and
can easily be exploited to allow the separation of substances that interact differently with the
hydrophobic matrix.

The three forms of smart polymers as mentioned above can be easily conjugated with bio-
molecules such as proteins and oligopeptides, sugars and polysaccharides, single- and double-
stranded oligonucleotides and DNA plasmids, simple lipids and phospholipids, and other
recognition ligands and synthetic drug molecules, which are capable of responding to biological,

physical, and chemical stimuli for widening their potential applications in many biomedical
fields [39-42].

1.3.2 Classification on the Basis of External Stimulus

1. pH-sensitive polymers: pH-sensitive polymers show transition in phase in response to changes
in environmental pH because they contain a large number of ionizable groups such as pendant
acidic or basic groups that either accept or release protons in environmental pH. Those with
weak acidic pendant groups in their polymer chain show high swelling in the basic medium
due to the ionization of acidic groups that is not possible in the acidic medium due to the com-
mon ion effect. However, the polymers that contain a large number of weakly basic groups
show a reverse response in the basic medium [43-45]. It is noticed that pH-sensitive polymers



