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N. P. KONOPLEVA AND V. N. POPOV

PREFACE TO THE SECOND RUSSIAN EDITION

Since the appearance of the first edition of this book,
which was devoted largely to the comstruction of the classi-
cal and quantum theory of gauge fields, interest in unified
theories of the various interactions has grown appreciably.
This is due primarily to the solution of two major theoret-
ical problems which stood in the way of the construction of
realistic gauge models of elementary particles: 1) renor-
malizability of gauge theories; 2) the origin of the
masses of the vector particles.. The mechanism of spontane-
ous breaking of local gauge symmetry which had already been ¥
proposed by Higgs in 1964 not only made it possible to as-
sign mass to the quanta of gauge fields, but also ensured
the renormalizability of the resulting theory of massive
fields. The latter was demonstrated by 't Hooft in 1971 for
the example of the Weinberg—Salam model (1967), which pro-
vides a unified description of the weak and electromagnetic
interactions. The correctness of the Weinberg—Salam model
was confirmed experimentally by the discovery in 1973 of
neutral currents, which were predicted by this model in
first-order perturbation theory. Subsequently, a large
number of unified gauge models of the strong, weak, and
electromagnetic interactions required the existence of new
quarks possessing a new quantum number ('charm"), as well as
new types of elementary particles. In 1974 bound systems of
two charmed quarks cé — the mysterious Y particles — were
actually observed experimentally. At the present time,
these particles, which manifest themselves as extremely nar-
row long-lived resonances, have already been well studied.
There has even appeared a spectroscopy of the family of ¢
particles, which are excited states of the cc system.

In 1977 an analogous system of two b quarks (bb) was
discovered — the T particle. Charmed mesons and baryons
in which the new quantum number is not compensated were
also discovered. Many unified gauge models of the weak and
electromagnetic interactions predicted the existence of
heavy leptons, and for a long time this was regarded as an
argument against such models. However, in 1976 the heavy T
lepton with mass ~1.8 GeV was discovered experimentally.
Thus, unified gauge models of the interactions are leading
to a new physics of elementary particles, which is rich in
discoveries. Therefore a solution to the problem of finding
2 unified description of all forms of interaction (strong,
weak, electromagnetic, and gravitational) is not only of



GAUGE FIELDS

mathematical interest, but is becoming practically essen-
tial. For the first time since the creation of quantum
electrodynamics, unified gauge models of the weak and elec-
tromagnetic interactions provide a theory in which calcula-
tions can be carried through to completion to arbitrary
order of perturbation theory.

Asymptotically free gauge models of the strong inter-
actions are free from ultraviolet divergences and ensure
"confinement" for quarks in the infrared region. The next
problem is to include quantum gravity in the unified scheme
of interactions. An idea which is very promising in this
respect is to make use of dual models ('"strings") in con-
junction with gauge invariance, and possibly alsc super-
gravity.

The classical theory of gauge fields is being developed
with equal success. The nonlinearity of the classical equa-
tions of non-Abelian gauge fields has given birth to a new
industry among theoreticians. We have in mind the study of
particle-like solutions of these equations (solitons, kinks,
monopoles, and vortices). Particle-like solutions possess
a new type of charge — topological charge, which one can
attempt to associate with the quantum numbers that charac-
terize the elementary particles. Therefore the theory of
gauge fields raises the question of the relationship be-
tween classical and quantum physics in a new way. Unfortu-
nately, the volume of this bock does not enable us to give
a sufficiently complete treatment of all the problems.
However, we present here the basic mathematical'apparatus
(with the exception of renormalization theory): the Lagran-
gian and geometrical formulations of the classical theory of
gauge fields, and the quantum theory using the method of
functional integration. 1In addition, we analyze the role of
the principles of relativity and symmetry in the construc-
tion of a physical theory.

We shall make use of contemporary mathematical methods
in the book: the variational formalism and Noether’s theo-
rems — in the Lagrangian formulation of field theory in-
variant with respect to an infinite group (Chapter II);
the coordinate-free method of exterior forms on a manifold
and the concept of a fiber space — in the analysis of the
geometrical picture of interaction (Chapter III); the path-
integral method — in the construction of a quantum theory
of gauge fields (Chapter IV). In particular, we shall show
that the classical theory of a gauge field can be regarded
as an aspect of geometry, and in this sense we have a real-
ization of the profound physical and philosophical idea of
Einstein that the geometry of space-time does not in itself
exist, since it is determined by the interaction of physical
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bodies. In other words, each form of interaction creates
its own geometry.

This book is based on original work of the authors,
and it also contains a survey of the most impertant results
on gauge fields by Scviet and foreign authors.

All the chapteis of the book are relatively self-con-
tained and may be read indepcudently. The first chapter is
introductory in character. T2 make the exposition of the
other chapters more accecsible, it introduces, in particular,
geometrical and physical terminology in parallel. For an
understanding of the remaining chapters, it is desirable to
be acquainted with group theory, Riemannian geometry, and
field theory at the level of courses given in physics and
mathematics departments at Universities. Chapters I—II1I
and the Preface were written by N. P. Konopleva, and Chap-
ter IV by V. N. Popov.

The authors are grateful to Academicians M. A. Markov,
L. D. Faddeev, and A. G. Josif'yan for supporting the second
edition of this book and for valuable remarks.

TRANSLATOR’S PREFACE

This is a tramslation of the second Russian edition of
the book Kalibrovochnye polya, which was published in Moscow
in 1980 as an updated version of the first edition of 1972.
While no attempt has been made to revise the text of the
translation, a number of minor misprints and erroneous
references have been corrected, and many references to Rus-
sian translations of works published in the West have been
replaced by the references to the original sources.

N. M. Queen
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CHAPTER I. INTERACTION OR GEOMETRY?
€1, PRINCIPLES OF RELATIVITY, GEOMETRY, AND INTERACTION

Introduction. In the 1960s a peculiar situation arose
in elementary-particle theory: on the one hand, there was
not a single experimental fact for which a theoretical basis
could not be found, and on the other hand, there was no con-
sistent theory which provided a unified description of the
entire diversity of properties and species of elementary
particles. The gulf between the "internal' symmetries
(hyvpercharge, isospin, etc.) and the "external" (space-time)
symmetries of elementary particles was felt particularly
acutely. It became increasingly clear that the construction
of a unified theory of interactions would require modifica-
tion of the fundamental principles on which physical theo-
ries are based and would lead to the use of new ideas about
the structure cf space-time and the nature of elementary-
particle interactions.

The symmetry properties of elementasry particles are
ueually formulated in terms of the invariants of the sym-
metry groups* of space-time, which specify the principle of
relativity of the theory (for example, Lorentz invariance),
and the internal symmetry groups (for example, isospin in-
variance of the strong interactions, which is a conseguence
6f the fact that the nuclear forces are independent of the
electric charges of the particles). Thus, the problem of
finding a natural unification of the internal and external
symmetries is intimately related to the use of new prineci-
ples of relativity and symmetry in eiementary-particle
theory. Such a fundamental principle is the requirement

*A group is & class of transformations (or operations)
over the elements of the given set satisfying the following
conditions (axioms): 1) the product of two transformations
A and B (two transformations performed in succession)

gives some transformation ¢ from the same class, i.e.,
A.B=C; 2) thia law of multiplication is associative, i.e.,
A-(B.-C= (A -B)-C;, 3) en identity transformation E is de-
fined; 4) each of the transformations A has an inverse
transformation A-} i.e., A.A-1=E. A group is said to be
finite if its transformations depend on a finite number
of numerical parameters, and infinite if the transforma-
tions of the group depend on a finite number of functions
or on an infinite number of parameters.
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of local invariance of the theory, and it is this that is
related to the ideas of universal interactions and gauge
fields.

The work of Yang, Mills, Utiyama, and Sakurai,1'3 who
first discussed gauge fields, was based on the assertion
that all the internal symmetry properties of elementary
particles are essentially local in character. It follows
from this statement that finite gauge symmetry groups must
be replaced by corresponding local groups, the parameters
of whose transformations vary from point to point. This
makes it possible toc endow the theory with a new physical
object — a gauge field, the interaction with which
ensures invariance of the theory with respect tc the local
symmetry group. Thus, the principle of local gauge invari-
ance is a deep physical principle, which permits the intro-
duction of an interaction purely axiomatically, its form
being determined in accordance with the symmetry properties
of the theory. Therefore, the properties of gauge fields
can be studied even independently of experiment. The prob-
lem ofvthe realization of the theoretical concepts in
observable phenomena is in itself quite complicated and is
thereby distinguished from the mathematical apparatus of the
theory. We note that local invariance was used for the
first time as a fundamental physical principle in Einstein’s
general theory of relativity.“ This idea was subsequently
developed by Weyl, who introduced the electromagnetic field
through the requirement of invariance of the theory with
respect to local, i.e., point-dependent, expansions of the
interval: ds*' = A (x)ds* .°> But the principle of local
gauge invariance took its final form as a physical principle
in the above-mentioned work of Yang, Mills, Utiyama, and
Sakurai (see §2).

The gravitational and electromagnetic fields, with
which the idea of gauge invariance was first associated, re-
fer to universal interactions. The gravitational field in-
teracts universally with all massive particles, and the
electromagnetic field with all charged particles. Local
gauge invariance led to the discovery of universal nuclear
interactions mediated by unstable vector particles — r e-
sonance s, which interact identically with all particles
that carry isospin. Universality of certain weak interac-
tions was also observed, and in this connection attempts
were also muade to apply the method of gauge fields to this
case.6 FHr a number c¢f years these attempts had no success,
but the fiuwal result exceeded all expectations. After the
discovery of the mechanism of spontaneous generation of the
masses of vector mesons (the Higgs mechanis m’ (1964))
and the formulation of a renormalization procedure for
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gauge models with spontaneous symmetry breaking ('t Hooft®8
(1971), Slavmov® (1972), and Taylor'® (1971)), it became
possible to construct a unified renormalizable theory of the
weak and electromagnetic interactions of elementary parti-
clegs, the simplest variant of which was the Weinberg—Salam
modelll (1967). This model predicted that neutral currents
necessarily exist, and until they were discovered experi-
mentally in 1973 this was regarded as an argument against
the theory. Subsequent experiments confirmed more compli-
cated quark gauge models which afford a unified description
of the strong, weak, and electromagneiic interactions of
hadrons.]z At the present time, the incorporation of grav-
ity into the general scheme of renormalizable interactions
is under consideration.

The basis of the theory of gauge fields comprises sym-
metry principles and the hypothesis of locality of the
fields, which converts global symmetries into local sym-
metries.

The principle of local gauge invariance reflects a deep
relationship between the universality of the various inter-
actions, conservation of the vector currents, and the exis-
tence of the interactions themselves. This principle de-
termines the form of all interactions, irrespective of their
physical nature, and thereby opens the way to the construc-
tion of a unified and consistent theory of the interactions
of elementary particles. At the same time, the principle of
local gauge invariance, like Einstein’s general principle of
relativity, gives the theory a form which admits a purely
geometrical interpretation. As a result, it becomes pos-
sible to develop and generalize Einstein’s idea that the
geometry of space is not specified ad hoc, but is deter-
mined by the interaction of physical bodies.!3 1In other
words, geometry acquires a dynamical character and effec-
tively reflects the influence on a distinguished test par-
ticle (or field) of all the remaining matter in the world.

The geometrization of gauge fields shows that 4-di-
mensional space-time is merely a particular case of possible
dynamical geometries. An arbitrary gauge field corresponds
to the geometry of a fiber space obtained from ordinary
space-time by replacing its points by "intermnal" spaces in
which the gauge group acts. Thus, the classical theory of
gauge fields, like general relativity, becomes a purely
geome.rical theory. The resulting unified theory of the
various interactions (strong, weak, electromagnetic, and
gravitational) is also a geometrical theory. Its unity con-
sists in the existence of a general principle ac-
cording to which a geometry corresponding to each of the
interactions is constructed.!“ In terms of the geometry of
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a fiber space, the motion of particles interacting with any
gauge field becomes free (forceless). As in general rela-
tivity, this eliminates the distinction between inertial
(or free) motions and noninertial motions (which take place
under the action of external forces). This makes it pos-
sible to describe gauge fields by means of simple geomet-
rical concepts (connection coefficients and curvature .en-
sors) and renders geometry experimentally testable. The
transition from 4-dimensional space-time to a fiber space
implies the recognition of an astonishing possibility: the
physical space determined by the interactions may be multi-
dimensional or even infinite-dimensional. From this point
of view, however, the description of microprocesses in
ordinary space-time terms implies a certain projection of
the "true" physical geometry of the interactions into a
geometry produced by our macroscopic instruments. There-
fore it would be very useful to know what we lose when this
projection is made.

Local Symmetries and Geometrization of Interactions.
Local Spatial Symmetries and the Gravita-
tional Field. Suppose that we have a square plate of
thin glass and a sphere. The flat uniform glass plate will
represent flat (Euclidean) space, and the surface of the
sphere will “Fepresent curved (Riemannian) space. Suppose
now that we must "wrap' the glass plate around the sphere.

Let us cut our large glass square into a set of tiny
squares and "cover" the sphere with them. This operation
is a model of the process of covering a curved surface (or
space) by local maps (or coordinate grids). It is easy to
see that the whole flat plate can be covered by a single
map, while the sphere cannot. It is for this reason that
we had to take a set of tiny squares (local maps), in order
to fit them as closely as possible to the points of the
sphere. Proceeding in this way, we replaced the sphere by
a set of small flat surfaces, which are interrelated in a
definite manner, for example, rotated with respect to one
another by a fixed angle. In other words, we can say that
the difference between the set of tiny flat squares assem-
bled into a single flat plate and the same set of squares
assembled into a sphere is that the angle of rotation be-
tween their planes is zero in the first case but nonzero in
the second. Translated into geometrical language, this
means that a curved space can be represented as a set of
flat spaces "joined" by connection coefficients.
The connection coefficients determine the magnitude of the
mutual "rotation" or "displacement" of neighboring local
flat spaces (Fig. 1). Therefore the connection coefficients
are zero when the small squares are stuck together into a
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plane, but nonzero when they are stuck together into a
sphere. Thus, the sphere is equivalent to the set of
planes + connection coefficients.

Let us now compare the symmetry groups of the plane and
the sphere, or more precisely, the groups of motions for
which these objects are, as one says, transformed into
themselves.

If the large square about which we spoke at the begin-
ning is rotated through a right angle around an axis passing
through its center and perpendicular to its surface, it will
occupy the same position as it did before the rotaticn (see
Fig. 1). Since for a person who did not observe the pro-
cess of rotation itself this state is no different from the
original one, we say that after such a rotation the square
has been transformed into itself. Note that after this
transformation all the points of the plate have moved
in one and the same plane and have rotated through one and
the same angle, i.e., have undergone one and the same
motion. Now if we select some tiny square attached to
the sphere and rotate the sphere through a right angle
around an axis passing through the center of this square and
perpendicular to its surface, the sphere will also coincide
with itself. But in this case the only points which- undergo
the previous motion are those belonging to the chosen tiny
square. Points of neighboring squares turned slightly on
the sphere with respect to one another undergo rotations in
different planes, i.e., different motions. This
means that while the flat plate was as a wihole sym-
metric with respect to the considered rotations, on the
sphere the previous symmetry has become
only local, i.e., it exists for each tiny sguare indi-
vidually, but not for all of them collectively. Note that
this fact does not rule out the possibility that the sphere
as a whole has ah intrinsic symmetry different from that of
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the flat plate.

Thus, locally the sphere possesses the same symmetry as
the plane as a whole. Localization of the symmetry reduces
to the fact that, while having the same structure (i.e.,
type of motion) at each point, the transformations must
have parameters which vary in going from one point to an-
other. In our example, in going from one tiny square on the
sphere to another, we are performing rotations around a new
axis, whereas the flat plate was rotated as a whole in one
plane around a single axis.

Now let us imagine that both the plane and the sphere
are very large and that the observer is very small. Suppose
that the observer has the possibility of learning something
about the space in which he finds himself, but that alli his
observations are "tied" to the point at which he is situated
and to the instant of time at which he makes the measure-
ments. Obviously, all results of the measurements will re-
flect only local properties of the space surrounding the
observer. Can he establish the nature of the space as a
whole? Can he, while situated at a point, distinguish a
sphere from a plane? This is precisely the question that
was raised for the first time in physics by Einstein.!?
Einstein’s answer is contained in his principle of
equivalence. Usually, this principle is formulated as
the principle of (local) equality of the imertial and gravi-
tational masses. But the principle of equivalence can also
be given another form, namely, flat space 4+ a gravi-
tational field is locally equivalent to a
curved Riemannian space (i.e., is indistinguish-
able from it!®). ’

It is easy to see that the principle of equivalence in
this form is very similar to the local equivalence of a
sphere and a plane established in the example given above.
For complete correspondence, it is sufficient to identify
the connection coefficients (a geometrical concept) with the
gravitational field (a physical concept). We then obtain a
geometrical interpretation of gravitation.

What is the geometry of the world about us? In a cer-
tain sense, the principle of equivalence implies that there
can be no unique answer to this question. We can suppose
that space is flat and that all bodies are subject to the
influence of a universal field that penetrates all matter,
or that there is no field but that space is curved. In this
case, the question of the geometry of space as a whole is
equivalent to the question of the behavior of physical
fields at arbitrarily large distances from the source. The
symmetry properties of space become symmetry properties of
interactions. The topology of space as a whole is reflected
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in the properties of the interactions. Thus, geometry and
physics are interlocked.

Note that the geometrical interpretation of the gravi-
tational field became possible as 2 result of localization
of the space-time symmetry, i.e., the transition from flat
space-time to a Riemannian space which is curved but which
locally possesses the same symmetries. Other forms of in-
teraction, namely, those mediated by gauge fields, also ad-
mit a purely geometrical interpretation., It is only in this
case that the local symmetries are internal symmetries of
elementary particles,

Local Internal Symmetries and Gauge
Fieldsg. To illustrate clearly what local symmetries are,
congider the following example. Suppose that a ping-pong
ball is moving along some trajectory and that we do not see
whether it is rotating around its center of mass, although
we know that the law of conservatign of angular momentum is
satisfied. How can we describe the positions of points of
the surface of the ball at an arbitrary instant of time if
the angular velocity of its intrinsic rotation can vary?

As is well known from mechanics, the free flight of a
ball is determined only by the motion of its center of mass.
The free motion of the center of mass is independent of
whether the ball is rotating and whether the speed and di-
rection of the axis of rotation are constant. Rotation
around the intrinsic center of mass is an additional (in-
ternal) degree of freedom which is present for every body
(more precisely, there are three degrees of freedom, since
rotation is possible in any plane). If the character of
rotation changes, to maintain the law of conservation of
angular momentum we must assume that during its flight the
ball is acted upon by some force field which twists it or
brakes its rotation. This force field is an analog of a
gauge field.

Gauge transformations is the name given to
those transformations of the functions describing the motion
of a particle which are not reflected in the observable
characteristics of the motion, i.e., do not alter its phys-
ical state. In this sense, rotations of a ball around its
center of mass are an analog of gauge transformations of an
internal symmetry if we are interested only in the trajec-
tories of the motion of the ball. Localization of this in-
ternal symmetry leads to a change of the angular-velocity
vector of the intrinsic rotation of the ball. Disappearance
of the localization, i.e., the presence of symmetry trans-
formations with constant parameters, corresponds here to the
establishment of a constant velocity of rotation along the
entire trajectory. It is obvious that the gauge field also
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vanishes in this case The constant angular-velocity vector
of the ball corresponds in the theory of condensed media to

constant properties of a medium throughout its volume, which
manifests itself as a constant order parameter (for example,
magnetization vector). In the theory of superconductivity,

the global symmetry is described by a constant phase of the

wave function of an electron.

The intrinsic rotations of a ball are unobservable un-
less some mark is made on the bail, for example, a stripe is
painted, making it possible to observed its rotation. But
the intrinsic rotations can b2 made observable only by
breaking the internal symmetry, since the stripe rer ders
different rotations of the ball inequivalent. This simple
example illustrates another important fact: whatever sym-
metry is present, it implies the er"isterce of identical,
i.e., indistinguishable, states, whereas observation and
measurement presuppose a distinction between the states,
i.e., symmetry breaking. This symmetry breaking is always
associated with an influence on the system, i.e., with the
appearance »>f some force field.'® In other words, to make
a symmetry observable, it musit be broken,.

An internal microscopic symmetry can become macroscopic and,
in principle, observable if in a macroscopically large
space-time region the local internal symmetry becomes global
(order develops). It then becomes possible to observe mac-
roscopic quantum phencmena, Examples of this kind are pro-
vided by the quantization of magnetic flux in superconduc-
tors and the appearance of coherent emission (lasers). The
classical theory of gauge fields describes microscopically
disordered systems and, as a rule, its predictions become
experimentally observable on macroscopic scales under spe-
cial conditions (phase transitions).

Invarience with respect to local gauge transformations
means that it is impossible to measure the relative phase
of the wave function of a particle at two different world
points. This assertion is illustrated by means of the fol-
lowing example involving balls. Suppose that a rotating
ball is placed at each point of the Universe. If two such
balls are situated at points separated from one another by
a spacelike interval, it is impossible to establish their
angle of rotation with respect to one another simply be-
cause the velocity of light is finite. This is true in any
space-time V.

Each local internal symmetry can be associated with its
own gauge field, whose scurce in the case of invariance with
respect to an ordinary (i.e., global) gauge group is a con-
served quantity — a vector or tensor current density. In
the example involving balls, the source of the gauge field
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is the intrinsic angular-momentum density of the balls.

Internal Spaces and a Fiber Space over
Vi, Internal symmetries can be understood as symmetries of
some internal space whose points correspond to different
states of a particle, which are not associated with its
position in space. An example of an internal symmetry is
isospin invariance, or the fact that the nuclear forces are
independent of the charges of the particles. As a result
of isospin invariance of the nuclear forces, the proton and
neutron are indistinguishable in the absence of an eleciro-
magnetic field. Two indistinguishable particles can be re-
garded as two states of the same particle. We label these
states by the values of an internal quantum number — the
isospin: 3} (the proton) or —% (the neutron). This gives
an isotopic doublet. It is also possible to have richer
isospin multiplets containing three or more particles. The
influence of the electromagnetic field on an isospin multi-
plet leads to breaking of the isospin symmetry and a decom-
position of the multiplet into individual components (par-
ticles), which behave differently with respect tc the elec-
tromagnetic field.

Localization of internal symmetries, like localization
of space-time symmetries, makes it necessary to introduce
a new physical object — a gauge field. The concept of a
gauge field was first introduced by Yang and Mills in con-
nection with an attempt to construct a theory of the strong
interactions on the basis of the requirement of invariance
with respect to the local group of isospin transformations.
In 1954 they proposed a method of introducing a vector
field which is responsible for the strong interactions be-
tween nucleons and which is related to a conserved isospin
current. The idea of the method was as follows.! Conserva-
tion of isospin is identical to the requirement of invariance
of all interactions with respect to rotations of the isospin.
This means that the orientation of the isospin has no phys-
ical significance when electromagnetic interactions can be
neglected. In this case, the distinction between the proton
and the neutron becomes completely arbitrary. However, it
is usually understood that this arbitrariness is limited by
the following condition: as soon as one chooses what to call
the proton and what to call the neutron at one point of
space-time, the freedom of choice disappears at other space-
time points, even at points separated from the first point
by a spacelike interval.

This situation is incompatible with the hypotheses of
short range and locality of the fields, on which ordinary
physical theories are based. In fact, suppose that there
is no electromagnetic field and that the proton and neutron



