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Preface

Since the revolutionary idea of ‘artificial’ semiconductor superlattice structures
proposed by Esaki and Tsu in 1969, semiconductor quantum structures have
opened up a new era not only in the research of physics and materials science, but
also in the development of electronic and optical devices. In the initial stage of this
field, study was limited to the two-dimensionally confined electron system, which
led to the discovery of many novel phenomena such as quantum Hall effects,
quantum confined Stark effects, Aharanov—Bohm effects. It is obvious that these
discoveries are duc to advances in materials science, in particular the atomic-scale
growth techniques such as molecular beam epitaxy and metal organic chemical
vapour deposition. Well-known examples of application are quantum well lasers,
high electron mobility transistors and resonant tunnelling diodes, which are based
on the two-dimensional confinement of electrons.

In recent years, efforts in this field have been devoted to the fabrication
and characterization of quantum structures with reduced dimensionality, namely
one- and zero-dimensional structures, with remarkable advancement in material
processing and micro-fabrication technology. The successful fabrication of
quantum wire and quantum dot structures have enabled scientists to explore
novel properties and new-concept devices. Some of the outstanding examples
are Coulomb blockade effects, microcavity lasers, exciton-based nonlinear optical
effects, and single-electron transistors.

In view of the rapid progress in this multidisciplinary area related to
semiconductor quantum structures, the researchers in this field felt a need to hold
a forum, where scientists in various backgrounds could get together to review
recent achievements and to discuss the future directions of development. In order
to fulfil such a demand, the 1998 Asian Science Seminar entitled the International
Workshop on Physics and Application of Semiconductor Quantum Structures has
been formed under the sponsorship of the Japan Society for the Promotion of
Science (JSPS) and the Korea Science and Engineering Foundation (KOSEF).

In this workshop, experts and leading scientists were invited to cover the
overall spectrum on the research activities in this field. This book is comprised of
the invited lectures of this workshop and a number of reviews. This book starts
with a perspective review on the evolution of semiconductor superlattices and
quantum nanostrctures (part 1) followed by the fabrication and characterization
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of quantum structures (part 2), transport properties (part 3), optical properties
(part 4), spin dependent properties (part 5), and device applications (part 6).

We would like to extend our sincere gratitude to the contributing authors
of the articles, the organizing members of the workshop, and especially the
sponsoring organizations of the workshop for their kind cooperation and support.

Takafumi Yao and Jong-Chun Weo
February 2000
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Chapter 1

The evolution of semiconductor
superlattices and quantum nanostructures

Leo Esaki
Tsukuba, Ibaraki 305-0047, Japan

In the early twentieth century, encounters with physical phenomena which require
detailed analyses in nanoscale, such as electron motion, prompted the advent of
quantum mechanics, since Newtonian mechanics could not possibly provide an
adequate explanation for them. Electron tunnelling through nanoscale barriers is
the most direct consequence of the law of quantum mechanics, for which the Esaki
tunnel diode gave most convincing experimental evidence in 1957. Following
the evolutionary path of quantum nanostructures, significant milestones are
presented, including the birth of semiconductor superlattices, resonant tunnel
diodes, quantum wires and dots.

1.1 Introduction

The twentieth century will be characterized by the fact that science and
technology have made remarkable progress, including the establishment of
quantum mechanics, the development of semiconductor devices with the
invention of the transistor and the evolution of computers/telecommunications.

In the early century, encounters with physical phenomena such as the
electron’s motion or the photon’s behaviour for which Newtonian mechanics
could not possibly provide an adequate explanation, prompted the advent of
quantum mechanics. The framework of quantum mechanics was established in
the superb work of Werner Heisenberg, Erwin Schrodinger, Paul Dirac and Max
Born in the period 1925-6.

During the infancy of the quantum theory, de Broglie [1] introduced a
new fundamental hypothesis that matter was endowed with a dualistic nature—
particles may also have the characteristics of waves. This hypothesis found
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4 Semiconductor superlattices and quantum nanostructures

expression, in the hands of Schrodinger [2], in the definite form now known as
the Schrodinger wave equation, whereby an electron is assumed to be represented
by a solution to this equation. The continuous non-zero nature of such solutions,
even in classically forbidden regions of negative kinetic energy, implies an ability
to penetrate such forbidden regions and a probability of tunnelling from one
classically allowed region to another. The concept of tunnelling itself arises from
this quantum-mechanical result, and has no analogy in classical mechanics. The
subsequent experimental manifestations of that concept can be regarded as one
of the early triumphs of the quantum theory. For instance, in 1928, Fowler and
Nordheim [3] explained, on the basis of electron tunnelling, the main features of
the phenomenon of electron emission from cold metals by high external electric
fields, which had been unexplained since its observation by Lilienfeld in 1922.

In 1932, Wilson [4], Frenkel and Joffe [5], and Nordheim [6] applied
quantum mechanical tunnelling to the interpretation of metal-semiconductor
contact rectifiers such as those made from selenium or cuprous oxide. Apparently,
this theory was accepted for a number of years until it was finally discarded after
it was realized that it predicted rectification in the wrong direction for ordinary,
practical diodes. It is now clear that, in the usual circumstances, the surface
barriers met by semiconductors in contact with metals are far too thick to observe
any tunnelling current.

In 1934, the development of the energy-band theory of solids prompted
Zener [7] to propose interband tunnelling as an explanation for dielectric
breakdown. He calculated the rate of transitions from a filled band to a next-
higher unfilled band by the application of an electric field. In effect, he showed
that an energy gap could be treated in the manner of a potential barrier. The
Zener mechanism in dielectric breakdown, however, has never been proved to
be important in reality. If a high electric field is applied to the bulk crystal of a
dielectric or semiconductor, avalanche breakdown (electron-hole pair generation)
generally precedes tunnelling, and thus the field never reaches a critical value for
tunnelling.

With the invention of the transistor in 1947 came a renewed interest in the
tunnelling process. Around 1950, the technology of Ge p-n junction diodes
was developed, and efforts were made to understand the junction properties. In
explaining the reverse-bias characteristic, McAfee et al [8] applied a modified
Zener theory and asserted that low-voltage breakdown in Ge diodes resulted from
interband tunnelling. Results of later studies, however, indicated that most Ge
junctions broke down by avalanche, but by that time the name ‘Zener diodes’ had
already been given to the low-breakdown Si diodes. Actually, Zener diodes are
almost always avalanche diodes.

In these circumstances, in 1956, the investigation of interband tunnelling
was initiated with heavily-doped Ge p—n junctions, where the junction width was
successfully reduced to the range of nanometres.

We first obtained a backward diode which was more conductive in the
reverse direction than in the forward direction. In this respect it agreed with




