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Preface

The rapid increase in environmental measurements during the past few

decades is associated with (1) increasing awareness of the complex relations

" linking biological responses to atmospheric variables, (2) development of
improved data acquisition and handling equipment, (3) the application-of
modeling to environmental problems, and (4) the implementation of large,
cooperative studies of international scope.

The consequences of man’s possible alteration of the environment have
increased our interest in the complex nature of biological responses to
meteorological variables. This has generated activity in both measurements
and in the application of modeling techniques. The virtual explosion of
modeling activity is also associated with the deveélopment of large computers.
The testing of these models has demonstrated the need for more, different,
and better environmental data. In addition, technological developments,
such as integrated circuits, have reduced the cost, power consumption, and
complexity of data acquisition systems, thus promoting more environmental
measurements. )

The emergence of scientific cooperation on a global scale has increased
measurement activities markedly. The International Geophysical Year
(1958) has been followed by the International Hydrologic Decade, the Inter-
national Biological Program, the Global Atmospheric Research Program,
and a host of environmental studies of a regional nature that have all

“emphasized field data collection.

With few exceptions, space-age technology has led to improved methods
for data recording and handling, rather than changes in instruments used
to sense the environment. Thus, while recording methods have progressed
from mechanically driven pens to data systems coupled with on-line com-:
puters, the same basic sensors have remained in use.
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These developments have made it easier to collect large quantities of
data, but all too frequently sensors are not properly exposed, electrically
isolated, or even compatible with the recording instruments. Vast quantities
of recorded data have often turned out to be invalid.

Courses on environmental instrumentation are not common on uni-
versity campuses, despite the need for training on this topic. Earlier books
on the subject, such as Meteorological Instruments by Middleton and Spil-
haus, are out of date and out of print. This book is designed to be used as
a text for advanced students and a guide or manual for researchers in the
field. Our purpose is to present the basic theory of environmental variables
and transducers, report our experiences on methodology and use, and
provide certain essential tables. The user is expected to have a basic physics
and mathemutics background and to be knowledgeable in the area of his
speciality. )

We will concentrate on the principles that govern the use of sensors and
the operation of recorder systems as these are less rapidly affected by
technological process. The applications will use currently available equip-
ment. )

September, 1979 Leo J. Fritschen
Lloyd W. Gay
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Chapter 1
Measurement Fundamentals

1.1 Introduction and Scope

Measurement programs should be planned with carefully defined objectives.
Valid objectives include the verification of a hypothesis, the testing of a
hypothesis, or explanation of phenomena. There is no place for measurement
for the sake of measurement in a planned program. We hope that the tech-
niques in this book will find their greatest usefulness in evaluating processes,
such as growth, development, photosynthesis, or transpiration, rather than
inventory or description of environmental factors.

The successful scientist must be capable of a sequence of activities that
begins with a measurement program. First and foremost, the investigator
should be an expert in the chosen field, with a thorough knowledge of the
organisms or processes to be studied. Second, the investigator should know
the instruments, their method of operation, and basic techniques for exposure
and recording. Third, a knowledge of data analysis is required if the data
are to be interpreted in terms of the objective. Calculators or computers are
usually brought in at this step in order to analyze the data in terms of statistics,
theory, and/or physical models. Finally, the observations, results, and
conclusions should be reported to colleagues to avoid useless duplication
of time and effort. A

Mastery of the entire process normally comes after intensive training and
a long period of experience. We shall focus on the second area: principles of
instrumentation, exposure of instruments, and the recording of valid data.
We will emphasize the validity of measurement rather than accuracy, as it.is
possible to accurately measure a temperature that is completely unrelated
to the true value. We will bring our experience to bear on the problem of
measuring true values of the desired entity.
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1.2 Measurement Errors

Every measurement can be described with respect to accuracy, precision,
and error. The definition of these terms at the outset will be helpful.

Accuracy is often confused with precision. Accuracy refers to the relation
between the measured and “true” value, or the closeness to an accepted
standard such as those maintained by the National Bureau of Standards.
The true value plus the error is equal to the indicated value. Precision, on the
other hand. refers to the variability observed among numerous measure-
ments of a quantity. As an example, consider a micrometer that was initially
both accurate and precise. If the micrometer is dropped and the frame bent,
the accuracy is altered, but the precision would be unaffected if the lead screw
remained undamaged. Accuracy is generally specified in terms of “in-
accuracy.” The accuracy of a thermometer, for example, may be accurate
to +0.1°C over a given range.

The error may be composed of systematic and random components. A
systematic error is unchanged between repeated measurements. For example,
if a meter is not set to zero before making a series of measurements, the
resulting errors would be consistently high or low. Random errors, in contrast
will vary between measurements. They may be caused by such factors as
electrical “noise,” fluctuating temperatures, operator error, or wind. Many
variables may contribute to random errors.

Random and systematic errors are illustrated in Fig. 1.1. The systematic
error is the difference between the true value, ¥, and the mean of an infinite
population of measurements, Y. Random error is the difference between Y
and the mean of a sample population, X. As the sample size increases, the
difference, Y — X, will decredse.

Frequency of occurrence

14 Y X
Magnitude of variable

Figure 1.1 Illustration of systematic error (¥ — Y) and random error (¥ — X)) where
V is the true value, Yis the mean of an infinite number of measurements, and X is the
mean of a sample population.
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Measured value

Tmé value

Figure 1.2. Various types of agreement between measured values, M, and true values,
¥, with intercept of 4 and slope of B.

Two types of systematic errors are illustrated in Fig. 1.2. Line 1 indicates
perfect agreement between the measured and true values; line 2 differs from
the true value by a constant amount; and line 3 differs by a constant slope, B.
If there were additional data available for statistical analysis, the random

_error component could be illustrated by plotting confidence limits on either
side of the lines.

The systematic and random error components can be added to indicate the
range of error that may be expected in a specific reading. The error limits
for a digital voltmeter, for example, may be given as +(0.01% of reading
+ 0.005% of range + 1 digit), indicating random components associated
with the size of the measured value, the scale of the voltmeter, and the
ambiguity of digital systems, respectively. The error limits will probably
specify the conditions of measurement in order to exclude random errors
associated with noise. If, for example, the voltmeter is reading a 60 mV signal
with the range on 999.99 mV, the error limits would be

+(0.006 + 0.05 + 0.01) = +0.066 mV.

1.3 Estimating Error

Statistical techniques will yield the agreement between measured and
predicted values when a number of observations are available, but it is
often useful to estimate the error limits that may apply to a single measure-
ment. The error is the difference between the measured value and the true
value, and it may be expressed in units of measure, as a percentage, or as



