

Understanding Enzymes

Function, Design, Engineering, and Analysis

edited by **Allan Svendsen**

Published by

Pan Stanford Publishing Pte. Ltd. Penthouse Level, Suntec Tower 3 8 Temasek Boulevard Singapore 038988

Email: editorial@panstanford.com Web: www.panstanford.com

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Understanding Enzymes: Function, Design, Engineering, and Analysis

Copyright © 2016 Pan Stanford Publishing Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN 978-981-4669-32-0 (Hardcover) ISBN 978-981-4669-33-7 (eBook)

Printed in the USA

Introduction

More than three decades ago, the hope emerged that protein engineering would be able to predict protein and enzyme function on the basis of X-ray crystal structures. The expectations were that we should be able to create goal-oriented functions in the enzyme of interest. A large effort was made to obtain the structures of enzymes of great importance for understanding biological processes and enzymes of general commercial interest in many industries. A large variety of structures of enzymes from many biological pathways, as well as enzymes of commercial interest, have been solved, including carbohydrate-acting enzymes, proteolytic enzymes, and lipolytic enzymes, and have helped tremendously in understanding the structure–function relationships. They have also revealed how much we still need to learn in order to manipulate genes to make enzymes react in a desired way.

Today, there are at least two major focuses on gaining benefit from and knowledge about enzyme function: (1) data analysis and (2) a more detailed understanding. Much learning cannot be said to be statistically feasible, but I hope the scientific society will still accept a few examples as feasible hypotheses to investigate further. With the increasing knowledge on enzyme function, with input from atomistic mobility and hydrogen bonding, the shifting electrostatics situation due to mobility and changes in relative coordinated atoms and macroscopic dependencies on enzyme environment changes leaves us with a very complex multidimensional space for how enzymes work. This makes it nearly experimentally unfeasible to have enough statistics on all the possible impact characteristics, as theoretically needed, making it difficult to draw sound, comprehensive, and significant conclusions. Commonly, even very large data sets will reveal single conclusions but are incorrectly

drawn since the number of data sets for each parameter alone is too few to make findings statistically significant. The data analysis will definitely add to a more detailed understanding and to suggestions for function. Some chapters touch upon data-driven discovery, but most of the chapters are focused on hypothesis-driven research testing one specific enzyme in a specific environment and with few parameters, giving exciting insights into the complexity of enzyme nature.

During my work in developing enzymes for technical use and work on the enzyme-substrate interaction, it has been tempting to combine the information from quantum mechanical calculations of the energetics in the catalytic reaction, and the overall molecular mobility using standard force fields, as well as electrostatics calculations and docking in order to inform on three important topics of enzyme function, namely (1) the initial substrate binding to the enzyme, (2) the important local fitting to accommodate the correct spatial state that can contain the reactive state as seen by molecular dynamics mobility and hydrogen bonding patterns, and (3) the reactive state energetics as measured by quantum mechanical calculations. This overall reaction could be stated in a formula as shown below:

Enzyme function = f (overall binding) + f (local fluctations and interactions) + f (reactive energy)

Or in other words, enzyme function is a function of three major key factors: (1) the overall fitting of the substrate for binding with the correct orientation for the more detailed local interactions in the nearer active site surroundings, (2) the necessary hydrogen bonding and electrostatic interactions to secure the correct arrangements for the catalysis reaction to take place, and (3) the quantum mechanical energy in the catalysis reaction. Seen from molecular dynamics simulations some hydrogen bonds are only present at a certain time during the simulation, indicating that activity only occurs when the structure is in a certain subdomain structure containing the important hydrogen bonds. If certain hydrogen bonds are in place at the same time the reaction can occur. If one of the three stated factors is not fulfilled at the same time, then no reaction occurs. Examples of important hydrogen bonds are presented in Chapter 15. In Chapter 10 on sequences and design the combination of sequence alignment information, docking, and molecular simulation of variant molecules to extract more combinatorial information is discussed.

This book focuses on the current understanding obtained in the past 10-15 years to the present. In the 1980s focus was on

The computer simulations reveal great insight into the function of enzymes and can help in designing new functionalities and activities. The predictive power is still not precise, but we can use the simulations to screen for potential variants of interest, which then need testing for the desired function. Decades ago, one specific predicted variant was selected for testing-today it is commonly understood that a certain number of the, say, top 10 or 100 candidates could potentially be of interest. The speed of computers today allows for this kind of suggestions and sometimes also a reasonable simplification is used for making the screening possible. Chapters 23 and 24 address these possibilities. Also Chapter 16 touches upon the in silico design possibilities.

It is now more than a decade ago that enzyme promiscuity became a major field of interest. The versatility of enzymes and their activities are more open today than ever and the general EC classification system is seldom fully explanatory today. A few chapters touch upon the promiscuity—not from a specificity issue but rather a reaction mechanistic view; see Chapters 15 and 23.

Other screening methods in the wet chemistry part are being developed, and while screening has come out of the first decade in protein engineering, the limitations are getting more visible and the possibilities better utilized. A few chapters address the methodologies (Chapters 16, 17, 21, and 22)—micronanotechnology has gone into the screening area and possibilities for very high numbers have become a reality. Smart techniques to secure the picking of hits are important and an interesting method is mentioned in Chapter 22.

In an earlier book I edited, Enzyme Engineering: Function, Design, Variant Generation and Screening, the focus was more on the variant generation and screening part and less on the function and design part. In this book the main focus is on enzyme function and design and less on variant generation and screening methods. This reflects the fact that many new insights into the more complex enzyme function have emerged during the past many years. Massive quantities of information on variants of enzymes and the multiple states of the structures as well as single-molecule insight have added to the colligative understanding of enzyme function.

The production of many mutations has, besides a lot of data, also resulted in the realization of how little we still understand about enzyme function. Therefore, this has been emphasized in the first eight chapters with examples from the versatility of factors influencing enzyme activity and enzyme-substrate interaction. Around 20 years ago the main enzyme understanding was based on simple kinetics and soluble substrate interactions. In industry, we are aware that the main enzyme function often occurs under conditions other than the simple substrate-enzyme interaction theory, very well described with mathematical equations. Chapter 3 (on singleenzyme function) and Chapter 2 (on enzyme motions) emphasize the rather complicated behavior of the enzymatic function, which continues to open new depths of understanding. Examples of these complicated behaviors are presented in Chapter 4 on surface-active enzymes and Chapter 7 on the carbohydrate-hydrolyzing enzyme family.

During the work on writing the book chapters representing important directions in enzyme research on enzyme function, design, engineering, and analysis, recent aspects have been published, including enzymes' use of the energy coming from the catalyzed chemical reaction itself, which adds to the chapters on mobility of the enzymes. Also the importance of electrostatics and the impact on enzyme function has not been directly addressed in the chapters but is clearly a major part of some of the added chapters and has been established as an important factor in enzyme function and catalysis. Clearly, more combinations of these factors mentioned in the chapters and above are needed in the future to further understand the full functional space of enzymes and thus understand how to address improvements by protein engineering.

Contents

In	trodu	action	xix
		PART I ENZYME FUNCTION	
1	A Sh	nort Practical Guide to the Quantitative Analysis of	
	Engi	neered Enzymes	3
	Chris	stopher D. Bayer and Florian Hollfelder	
	1.1	Introduction	3
	1.2	Quantifying Reaction Progress	4
	1.3	Typical Saturation Plots Give Michaelis-Menten	
		Parameters	5
		What Can Go Wrong?	8
	1.5	Dealing with Multiphasic and Pre-Steady-State	
		Kinetics	12
	1.6	Evaluating Enzymes	16
2	Prot	ein Conformational Motions: Enzyme Catalysis	21
	Xiny	i Huang, C. Tony Liu, and Stephen J. Benkovic	
	2.1	Introduction	21
	2.2	Multidimensional Protein Landscape and the	
		Timescales of Motions	22
	2.3	Conformational Changes in Enzyme-Substrate	
		Interactions	26
	2.4	0	28
		2.4.1 Protein Dynamics of DHFR in the Catalytic	
		Cycle	30
		2.4.2 Temporally Overlap: Correlation Does Not	
		Mean Causation	32
		2.4.3 Fast Timescale Conformational Fluctuations	34

		2.4.4	Effect of Conformational Changes on the	
			Electrostatic Environment	36
	2.5	Conse	ervation of Protein Motions in Evolution	38
	2.6	Desig	ning Protein Dynamics	39
	2.7	Concl	uding Remarks	40
3	Enzy	molog	y Meets Nanotechnology: Single-Molecule	
	Met	hods fo	or Observing Enzyme Kinetics in Real Time	47
	Kers	tin G. E	Blank, Anna A. Wasiel, and Alan E. Rowan	
	3.1		duction	48
	3.2	Single	e-Turnover Detection	53
ž		3.2.1	Fluorescent Reporter Systems	53
		3.2.2	Measurement Setup	56
		3.2.3	Data Analysis	57
	3.3	Single	e-Enzyme Kinetics	60
		3.3.1	Candida antarctica Lipase B	63
		3.3.2	Thermomyces lanuginosus Lipase	67
		3.3.3	α -Chymotrypsin	73
		3.3.4	Nitrite Reductase	78
		3.3.5	Summary	84
	3.4	New I	Developments Facilitated by Nanotechnology	88
		3.4.1	Nano-optical Approaches	89
		3.4.2	Nano-electronic Approaches	96
		3.4.3	Nanomechanical Approaches	103
		3.4.4	Summary	108
	3.5	Concl	usion	110
4	Inte	rfacial I	Enzyme Function Visualized Using Neutron, X-Ray,	
	and	Light-S	cattering Methods	125
	Han	na Wad	klin and Tommy Nylander	
	4.1	Phosp	pholipase A2: An Interfacially Activated Enzyme	126
		4.1.1	Neutron Reflection	129
		4.1.2	Ellipsometry	130
		4.1.3	Activity of Naja mossambica mossambica PLA ₂	130
		4.1.4		133
		4.1.5	The Lag Phase and Activation of Pancreatic	
			PLA ₂	135
		4.1.6	Distribution of Products during the Lag Phase	138

			Hydrolysis of DPPC by Pancreatic PLA_2	139
		4.1.8	Role of the Reaction Products in PLA ₂	
		110	Activation	141
		4.1.9	Effect of pH and Activation by	4.4.4
	4.2	041	$Me-\beta$ -cyclodextrin	144
	4.2		Lipolytic Enzyme Reactions on Surfaces	150
		4.2.1	7 0 7	150
	4.3	Callul	Liquid Crystalline Nanostructures ase Enzymes	150 154
	4.4	Concl		154
	4.4	Conci	usion	158
5	Fold	ing Dyi	namics and Structural Basis of the Enzyme	
	Med	hanisn	n of Ubiquitin C-Terminal Hydroylases	167
	Shai	ng-Te D	anny Hsu	
	5.1	Introd	duction	169
		5.1.1	UCH-L1	171
			5.1.1.1 Genetic association between UCH-L1	
			and neurodegenerative diseases	171
			5.1.1.2 UCH-L1 in oncogenesis	175
		5.1.2	9	
			Associated with UCH-L1	175
			UCHL3	177
			UCHL5	178
		5.1.5	BAP1	179
	5.2		Structures	180
	5.3		ng Dynamics and Kinetics	183
	5.4		rate Recognition	184
	5.5		ne Mechanism	186
	5.6	Concl	usion	189
6	Stab	ilizatio	n of Enzymes by Metal Binding: Structures of Two	
	Alka	lophili	c Bacillus Subtilases and Analysis of the Second	
	Met	al-Bind	ling Site of the Subtilase Family	203
	Jan I	Dohnal	ek, Katherine E. McAuley, Andrzej M. Brzozowski,	
	Pete		tergaard, Allan Svendsen, and Keith S. Wilson	
	6.1	Introd	duction: Subtilases and Metal Binding	203
		6.1.1	Calcium-Binding Sites in Bacillus: Proposal for	
			a Standard Nomenclature	209

	6.1.2	The We	ak Metal-Binding Site	214
6.2	Two N	New Stru	ctures of Subtilases with Altered	
	Calciu	ım Sites		216
	6.2.1	Protein	ase SubTY	216
		6.2.1.1	The overall fold	216
		6.2.1.2	The active site	216
		6.2.1.3	SubTY calcium and sodium sites	218
		6.2.1.4	SubTY disulfide bridge	219
	6.2.2	SubHal		220
		6.2.2.1	The unliganded form of SubHal	220
		6.2.2.2	The SubHal:CI2A complex	221
		6.2.2.3	Termini, surface, and pH stability of	
			SubHal	221
		6.2.2.4	The two crystallographically	
			independent SubHal:CI2A complexes	223
		6.2.2.5	The calcium sites in SubHal	224
		6.2.2.6	The active site of SubHal	226
	6.2.3	Enzyma	itic Activity of SubTY and SubHal	228
	6.2.4	Compar	rison of SubTY and SubHal with Other	
		Subtilas	ses	228
	6.2.5	The Sub	Hal C-domain Compared to the	
		Eukaryo	otic PCs, Furin and Kexin	232
		6.2.5.1	Active site comparison	233
		6.2.5.2	The specificity pockets	234
		6.2.5.3	Inhibitor CI2A binding	234
	6.2.6	Activity	Profiles	236
	6.2.7	Compar	rison of Metal Binding at the Strong and	
		Weak Si	ites in the S8 Family	236
	6.2.8	The Ca-	II and Na-II Metal-Binding Sites	237
6.3	Concl	usion: In	iplications for Structural Studies of	
	Enzyn	nes		248
6.4	Mater	ials and	Methods	249
	6.4.1	SubTY		249
		6.4.1.1	Protein production and purification	249
		6.4.1.2	Purification of the SubTY:CI2A (1:1)	
			complex	250
		6.4.1.3	Crystallization	250
		6.4.1.4	Structure determination	251

		6.4.2	SubHal		251
			6.4.2.1	Protein production and purification	251
			6.4.2.2	Purification of the SubHal:CI2A (1:1)	
				complex	252
			6.4.2.3	Crystallization	252
			6.4.2.4	Structure determination	253
		6.4.3	Proteas	se Assays	256
		6.4.4	pH Stab	pility	257
		6.4.5	Data De	eposition	257
7	Stru	cture a	nd Funct	ional Roles of Surface Binding Sites in	
			Enzymes		267
	Dari	ell Coc	kburn and	d Birte Svensson	
	7.1	Intro	duction		267
	7.2	Identi	ification	of SBSs: X-Ray Crystallography	271
	7.3	Bioin	formatics	s of SBS Enzymes	273
	7.4	Bindi	ng Site Is	solation	275
	7.5	Prote	ction of F	Binding Sites from Chemical Labeling	277
	7.6			etic Resonance	277
	7.7	Bindi	ng Assay	S	278
	7.8	Activi	ty Assay:	S	282
	7.9	Futur	e Prospe	ects	283
	7.10	Concl	usion		286
8	Inte	rfacial	Enzymes	and Their Interactions with Surfaces:	
				on Studies	297
	Nati	halie W	illems, N	1ickaël Lelimousin, Heidi Koldsø,	
	and	Mark S	S. P. Sanso	om	
	8.1	Intro	duction		297
	8.2	Enzy	me Intera	actions at Interfaces	299
	8.3			namic Simulations of Biomolecular	
		Syste			301
	8.4	Lipas			303
		_		tic MD Studies of Lipase Interactions	
				terfaces	304
		8.4	.2 The	Role of Water in Lipase Catalysis at	
				rfaces	307

	8.5	Coarse-C	Grained MD Studies of Interfacial Enzymes:	
		Orientat	ion and Interactions	309
		8.5.1 I	Phospholipase A2	309
		8.5.2		310
	8.6	Conclusi	ons	311
			PART II ENZYME DESIGN	
9	Sequ	ience, Str	ucture, Function: What We Learn from	
	Anal	yzing Pro	tein Families	321
	Mich	nael Widm	nann and Jürgen Pleiss	
	9.1	Introduc	ction	321
	9.2	Detectio	n of Inconsistencies Utilizing a Standard	
			ing Scheme	323
	9.3	Identific	ation of Functionally Relevant Positions	327
	9.4	The Mod	lular Structure of Thiamine	
		Diphosp	hate–Dependent Decarboxylases	330
	9.5	Stereose	lectivity-Determining Positions: The	
		S-Pocket	Concept in Thiamine	
		Diphosp	hate–Dependent Decarboxylases	333
	9.6	Regiosel	ectivity-Determining Positions: Design of	
		Smart Cy	tochrome P450 Monooxygenase Libraries	336
	9.7	Substrat	e Specificity–Determining Positions: The	
		GX/GGG	X Motif in Lipases	340
	9.8	Conclusi	on	341
10	Bioi	nformatic	Analysis of Protein Families to Select	
			ted Variable Positions	351
	Dmi	try Suplate	ov, Evgeny Kirilin, and Vytas Švedas	
		Introdu		352
	10.2	Bioinfo	rmatic Analysis of Evolutionary Information	
			tify Function-Related Variable Positions	359
			Problem Definition	359
		10.2.2	Scoring Schemes in the Variable Position	
			Selection: High-Entropy, Subfamily-Specific,	
			and Co-Evolving Positions	361
		10.2.3	Association of the Variable Positions with	
			Functional Subfamilies	366

		10.2.4	How to Select Functionally Important	
			Positions as Hotspots for Further	
			Evaluation: Implementation of Statistical	
			Analysis	366
	10.3	The Bio	pinformatic Analysis of Diverse Protein	
		Superfa	amilies	369
		10.3.1	Bioinformatic Challenges at Studying	
			Enzymes	369
		10.3.2	Zebra: A New Algorithm to Select	
			Functionally Important Subfamily-Specific	
			Positions from Sequence and Structural	
			Data	370
	10.4	Subfam	nily-Specific Positions as a Tool for Enzyme	
		Engine	ering	375
	10.5	Conclu	sion	377
11	Deco	ding Life	Secrets in Sequences by Chemicals	387
	Zizha	ng Zhang	1	
	11.1	Introdu	action	388
	11.2	Linking	g an Enzyme's Activity to Its Sequence	389
	11.3	Refinin	g the Sequence Space to a Specific Function	
		by Dire	cted Evolution	395
	11.4	Linking	Chemistry to -Omics with High-Throughput	
		Screeni	ing Methods	398
	11.5	Finding	g Large Sequence Space of a Specific	
		Functio	on from Microbial Diversity	400
	11.6	Linking	g Sequences to Substromes at the Molecular	
		Level		404
		11.6.1	Biocatalytic Study of EHs	405
		11.6.2	Pharmacological Study of EHs	407
		11.6.3	Mechanistic Study of EHs	407
		11.6.4	What We Have Learned from the Studies of	
			EH	410
		11.6.5	Technologies with Potentials in	,
			Genochemistry Approach	410
	11.7	Correla	iting with Computational Methods	410
	11.8		ms That Genochemistry Can Potentially	
		Tackle		413
	11.9	Conclu	sion	414

12	Role	of Tunnels and Gates in Enzymatic Catalysis	421
	Sérgio	o M. Marques, Jan Brezovsky, and Jiri Damborsky	
	12.1	Introduction	421
	12.2	Protein Tunnels	423
		12.2.1 Structural Basis and Function	423
		12.2.2 Identification Methods	427
		12.2.3 Molecular Engineering	429
	12.3	Protein Gates	431
		12.3.1 Structural Basis and Function	431
		12.3.2 Identification Methods	437
		12.3.3 Molecular Engineering	440
	12.4	Conclusions	442
13	Mole	cular Descriptors for the Structural Analysis of Enzyme	
	Active	e Sites	465
	Valeri	o Ferrario, Lydia Siragusa, Cynthia Ebert,	
	Gabri	ele Cruciani, and Lucia Gardossia	
	13.1	Introduction: Molecular Descriptors for	
		Investigation of Enzyme Catalysis	465
	13.2	Molecular Descriptors Based on Molecular	
		Interaction Fields	467
	13.3	Multivariate Statistical Analysis for Processing and	
		Interpretation of Molecular Descriptors	472
	13.4	Grind Descriptors for the Study of Substrate	
		Specificity	475
	13.5	VolSurf Descriptors for the Modeling of Substrate	
		Specificity	477
	13.6	Differential MIF _S Descriptors for the Study of	
		Enantioselectivity	479
	13.7	Hybrid MIF _S Descriptors for the Computation of	
		Entropic Contribution to Enantiodiscrimination	481
	13.8	Analysis of Enzyme Active Sites for Rational	
		Enzyme Engineering	484
	13.9	BioGPS Descriptors for in silico Rational Design	
		and Screening of Enzymes	489
	13.10	Conclusions	495