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Preface

Random matrices are widely and successfully used in physics for almost
60-70 years, beginning with the works of Wigner and Dyson. Initially pro-
posed to describe statistics of excited levels in complex nuclei, the Random
Matrix Theory has grown far beyond nuclear physics, and also far beyond just
level statistics. It is constantly developing into new areas of physics and math-
ematics, and now constitutes a part of the general culture and curriculum of a
theoretical physicist.

Mathematical methods inspired by random matrix theory have become pow-
erful and sophisticated, and enjoy rapidly growing list of applications in seem-
ingly disconnected disciplines of physics and mathematics.

A few recent, randomly ordered, examples of emergence of the Random
Matrix Theory are:

- universal correlations in the mesoscopic systems,
- disordered and quantum chaotic systems;

- asymptotic combinatorics;

- statistical mechanics on random planar graphs;

- problems of non-equilibrium dynamics and hydrodynamics, growth mod-
els;

- dynamical phase transition in glasses;
- low energy limits of QCD;

- advances in two dimensional quantum gravity and non-critical string the-
ory, are in great part due to applications of the Random Matrix Theory;

- superstring theory and non-abelian supersymmetric gauge theories;

- zeros and value distributions of Riemann zeta-function, applications in
modular forms and elliptic curves;

- quantum and classical integrable systems and soliton theory.



viii APPLICATIONS OF RANDOM MATRICES IN PHYSICS

In these fields the Random Matrix Theory sheds a new light on classical prob-
lems.

On the surface, these subjects seem to have little in common. In depth the
subjects are related by an intrinsic logic and unifying methods of theoretical
physics. One important unifying ground, and also a mathematical basis for the
Random Matrix Theory, is the concept of integrability. This is despite the fact
that the theory was invented to describe randomness.

The main goal of the school was to accentuate fascinating links between
different problems of physics and mathematics, where the methods of the Ran-
dom Matrix Theory have been successfully used.

We hope that the current volume serves this goal. Comprehensive lectures
and lecture notes of seminars presented by the leading researchers bring a
reader to frontiers of a broad range of subjects, applications, and methods of
the Random Matrix Universe.

We are gratefully indebted to Eldad Bettelheim for his help in preparing the
volume.

EDITORS
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RANDOM MATRICES AND NUMBER THEORY

J. P. Keating -
School of Mathematics,
University of Bristol,

Bristol, BS8 ITW

UK

1. Introduction

My purpose in these lecture notes is to review and explain some recent re-
sults concerning connections betwden random matrix theory and number the-
ory. Specifically, I will focus on how random matrix theory has been used to
shed new light on some classical problems relating to the value distributions
of the Riemann zeta-function and other L-functions, and on applications to
modular forms and elliptic curves.

This may all seem rather far from Physics, but, as I hope to make clear, the
questions I shall be reviewing are rather natural from the random-matrix point
of view, and attempts to answer them have stimulated significant developments
within that subject. Moreover, analogies between properties of the Riemann
zeta function, random matrix theory, and the semiclassical theory of quantum
chaotic systems have been the subject of considerable interest over the past 20
years. Indeed, the Riemann zeta function might be viewed as one of the best
testing grounds for those theories.

In this introductory chapter I shall attempt to paint the number-theoretical
background needed to follow these notes, give some history, and set some
context from the point of view of Physics. The calculations described in the
later chapters are, as far as possible, self-contained.

1.1 Number-theoretical background
The Riemann zeta function is deﬁned by

<(s)=g-§—s=ﬂ(1—;)_l )

P

for Res > 1 where p labels the primes, and then by analytic continuation to
the rest of the complex plane. It has a single simple pole at s = 1, zeros at
§ = —2,—4,—6, etc., and infinitely many zeros, called the non-trivial zeros,

1
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2 APPLICATIONS OF RANDOM MATRICES IN PHYSICS

in the critical strip 0 < Res < 1. It satisfies the functional equation

~s/2p (8 _ -(-s)yjep (1= _
7 r‘<2)g(s)_7r 1"( ; )g(1 5). @

The Riemann Hypothesis states that all of the non-trivial zeros lie on the
critical line Res = 1/2 (i.e. on the symmetry line of the functional equation);
that is, ((1/2 + it) = 0 has non-trivial solutions only when t = ¢, € R [33].
This is known to be true for at least 40% of the non-trivial zeros [6], for the
first 100 billion of them [36], and for batches lying much higher [29].

In these notes I will, for ease of presentation, assume the Riemann Hypoth-
esis to be true. This is not strictly necessary — it simply makes some of the
formulae more transparent.

The mean density of the non-trivial zeros increases logarithmically with
height ¢ up the critical line. Specifically, the unfolded zeros

|tn]
—los
27 08 27

3

Wy = tn

satisfy
. 1 .
gim 2t {wn € [0, W]} = 1 4

that is, the mean of wy4) — wy 15 1.

The zeta function is central to the theory of the distribution of the prime
numbers. This fact follows directly from the representation of the zeta function
as a product over the primes, known as the Euler product. Essentially the
nontrivial zeros and the primes may be thought of as Fourier-conjugate sets of
numbers. For example, the number of primes less than X can be expressed
as a harmonic sum over the zeros, and the number, N(T'), of non-trivial zeros
with heights 0 < £, < T can be expressed as a harmonic sum over the primes.
Such connections are examples of what are generally called explicit formulae.
Ignoring niceties associated with convergence, the second takes the form

N(T) = N(T) — = Z Z 5 sin(rT log p), (5)
p r= 1
where T r T 7 1

as T — oo. This follows from integrating the logarithmic derivative of ((s)
around a rectangle, positioned symmétrically with respect to the critical line
and passing through the points s = 1/2 and s = 1/2+ iT, using the functional
equation. (Formulae like this can be made to converge by integrating both sides
against a smooth function with sufficiently fast decay as |T'| — 00.)
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It will be a crucial point for us that the Riemann zeta-function is but one
example of a much wider class of functions known as L-functions. These
L-functions all have an Euler product representation; they all satisfy a func-
tional equation like the one satisfied by the Riemann zeta-function; and in each
case their non-trivial zeros are subject to a generalized Riemann hypothesis
(i.e. they are all conjectured to lie on the symmetry axis of the corresponding
functional equation).

To give an example, let

d +1 if ptdand z? = d (mod p) solvable
xit) = (5) =1 0 itpla ™
p —~1 if p{dand 2% = d (mod p) not solvable

denote the Legendre symbol. Then define

-1
Lo(s,xa) = - Xd(sp)
b5, x4 1;[( 1))
— xa(n)

= =, @®)
=1

3

where the product is over the prime numbers. These functions form a family of
L-functions parameterized by the integer index d. The Riemann zeta-function
is itself a member of this family.

There are many other ways to construct families of L-functions. It will be
particularly important to us that elliptic curves also provide a route to doing
this. I will give an explicit example in the last chapter of these notes.

1.2 History

The connection between random matrix theory and number theory was first
made in 1973 in the work of Montgomery [28], who conjectured that

“}iinoo -‘;V—#{wn,wm e0,W]:a<wy—wn<pB}=
3 s 2
/ <5(:c) +1— §E;T(::sz> dz. (9)

This conjecture was motivated by a theorem Montgomery proved in the same
paper that may be restated as follows:

im = 3 f(wn—wm):/::f(m) (a(m)+1—§32—(’1x—)> dz (10)

N—oo N )
nm<N
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for all test functions f(xz) whose Fourier transforms

f(T) = [ f(x) exp(2mizT)dx )

have support in the range (-1, 1) and are such that the sum and integral in (10)
converge. The generalized form of the Montgomery conjecture is that (10)
holds for all test functions such that the sum and integral converge, without -

-~

any restriction on the support of f(r). The form of the conjecture (9) then
corresponds to the particular case in which f(z) is taken to be the indicator
function on the interval [a, 8) (and so does not fall within the class of test
functions covered by the theorem).

The link with random matrix theory follows from the observation that the
pair correlation of the nontrivial zeros conjectured by Montgomery coincides
precisely with that which holds for the eigenvalues of random matrices taken
from either the Circular Unitary Ensemble (CUE) or the Gaussian Unitary En-
semble (GUE) of random matrices [27] (i.e. random unitary or hermitian ma-
trices) in the limit of large matrix size. For example, let A be an N x N
unitary matrix, so that A(AT)* = AA! = I. The eigenvalues of A lie on the
-unit circle; that is, they may be expressed in the form %+, 4,, € R. Scaling the
eigenphases #,, so that they have unit mean spacing,

N
27’

the two-point correlation function for a given matrix A may be defined as

bn = O (12)

N N 00
Ro(Aiz) = =325 Y Sa+ kN —gutdn). (13

n=lm=1k=—00

so that _ N
~ > (60— 6m) = | Felsiz)f(@)da. (14)
Ro(A; z) is clearly periodic in z, so can be expressed as a Fourier series:
1 ‘
Ra(4;2) = <5 kz | Tr Ak|2e2mike/N (15)
=—00

The CUE corresponds taking matrices from U(N) with a probability mea-
sure given by the normalized Haar measure on the group (i.e. the unique mea-
sure that is invariant under all unitary transformations). It follows from (15)
that the CUE average of Ry(A;x) may be evaluated by computing the corre-
sponding average of the Fourier coefficients | TrA*|2. This was done by Dyson
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[14]:

N2 E=0
/ ITe A" Pdpriaar(A) = { [kl k| < N 16)
U(®) N k| > N.

There are several methods for proving this. One reasonably elementary
proof involves using Heine’s identity

/ fc(917"-a9N)d/-l/HaaT(A)
U(N)

1 2r 2m 0 n‘_
:W/o A fe(B1, ... ,0n) det(e®""m))do, ... doy  (17)

for class functions f.(A) = f.(61,02,...,0N) (i.e. functions f, that are sym-
metric in all of their variables) to give

1 27 27 )
|rI\rAk 2dMH A) = —/ / elk(@j—ﬁl)
T )< g [ T2

1 "1 .. gmiN-1)8
ei02 1 e e i(N=2)62
X . . ] . dg,---don. (18)
ei(Nil)eN ei(N;Q)GN .. 1

The net contribution from the diagonal (5 = () terms in the double sum is N,
because the measure is normalized and there are IV diagonal terms. Using the
fact that

1 27

ind __ 1 TL=0
) dG_{O W (19)

27 0
if & > N then the integral of the off-diagonal terms is zero, because, for
example, when the determinant is expanded out and multiplied by the prefactor
there is no possibility of 8; cancelling in the exponent. If k = N — s, 5 =
1,..., N — 1, then the off-diagonal terms contribute —s; for example, when
s = 1 only one non-zero term survives when the determinant is expanded
out, multiplied by the prefactor, and integrated term-by-term — this is the term
coming from multiplying the bottom-left entry by the top-right entry and all
of the diagonal entries on the other rows. Thus the combined diagonal and
off-diagonal terms add up to give the expression in (16), bearing in mind that
when k = 0 the total is just N2, the number of terms in the sum over 5 and .
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Heine’s identity itself may be proved using the Weyl Integration Formula
(35]
1 2T 27
A)d A= ———
/U(N) fe(A)dpnaar (A) 2m)N NI /0 A fe(01,...,0n)
X

[T €% — e [2d6,---doy (20)
1<j<k<N

for class functions f.(A), the Vandermonde identity

H le?s — %2 = det [MMT] (21)
1<j<k<N
where
1 1
o o102 ..
M=| iy , @2
ei(N;l)al ci(N=1)0

the fact that

N
det [MMT] = det [Z eif’ﬂ"»—m)] , (23)
=1

and then by performing elementary manipulations of the rows in this determi-
nant.

The Weyl Integration formula will play a central role in these notes. One
way to understand it is to observe that, by definition, dgaar (A) is invariant
under A — UAU' where U is any N x N unitary matrix, and that A can
always be diagonalized by a unitary transformation; that is, it can be written as

et .. 0
a=uvl| + - o (24)
0 .. elfn

where U is an N x N unitary matrix. Therefore the integral over A can be
written as an integral over the matrix elements of U and the eigenphases 6,,.
Because the measure is invariant under unitary transformations, the integral
over the matrix elements of U can be evaluated straightforwardly, leaving the
integral over the eigenphases (20).

Henceforth, to simplify the notation, I shall drop the subscript on the mea-
sure duu(A) —in all integrals over compact groups the measure may be taken to
be the Haar measure on the group.



