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Preface

Representation theory is the study of concrete realizations of the
axiomatic systems of abstract algebra. It originated in the study
of permutation groups, and algebras of matrices. The theory of
group representations was developed in an astonishingly complete
and useful form by Frobenius in the last two decades of the nineteenth
century. Both Frobenius and Burnside realized that group repre-
sentations were sure to play an important part in the theory of
abstract finite groups. The first book ‘to give a systematic account
of representation theory appeared in 1911 (Burnside [4]) and contained
many results on abstract groups which were proved using group
characters. Perhaps the most famous of these is Burnside’s theorem
that a finite group whose order has at most two distinct prime
divisors must be solvable. Recently, a purely group-theoretic proof
of Burnside’s theorem has been obtained by Thompson. The new
proof is of course important for the structure theory of groups,
but it is at least as complicated as the original proof by group
characters.

The second stage in the development of representation theory,
initiated by E. Noether {1] in 1929, resulted in the absorption of the
theory into the study of modules over rings and algebras.” The
representation theory of rings and algebras has led to new insights
in the classical theory of semi-simple rings and to new investigations
of rings with minimum condition centering around Nakayama's
theory of Frobenius algebras and quasi-Frobenius rings.

Another major development in representation theory is R. Brauer’s
work on modular representations of finite groups. Like the original
work of Frobenius, Brauer’s theory has many significant applications
to the theory of finite groups. At the same time it draws on the
representation theory of algebras and suggests new problems on
modules and rings with minimum condition. It also emphasizes the
fundamental importance of number-theoretical questions in group
theory and representation theory.

During the past decade there has been increased emphasis on
integral representations of groups and rings, motivated to some
extent by questions arising from homological algebra. This theory
of integral representations has been a fruitful source of problems
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vi FREFACE

and conjectures both in homological algebra and in the arithmetic
of non-commutative rings.

The purpose of this book is to give, in as self-contained a manner
as possible, an up-to-date account of the representation theory of
finite groups and associative rings and algebras. This book is
not intended to. be encyclopedic in nature, nor is it a historical
listing  of the entire theory. We have instead concentrated on
what seem to us to.be the most important and fruitful results and
have included as much preliminary material as necessary for their
proofs,

In addition to the classical work given in Burnside's book [4], we
have paid particular attention to the theory of induced characters
and induced representations, quasi-Frobenius rings and Frobenius

"algebras, integral representations, and the theory of modular rep-
redentations. Much of this material has heretofore been available
only in research articles. We have concentrated here on general
methods and have built the theory solidly on the study of modules
over rings with minimum condition. Enough examples and problems
have been included, however, to help the research worker who needs
to compute explicit representations for particular groups. We have
included some applications of group representations to the structure
theory of finite groups, but a definitive account of these applications
lies outside the scope of this book. In Section 92 we have given a
survey of the present literature dealing with these applications and
have included in this book all the representation-theoretic prerequisites
needed for reading this literature, though not all the purely group-
theoretic background which might be necessary.

No attempt has been made to orient the reader toward physical
applications. For these we may refer the reader to recent books
and articles dealing with that part of group theory relevant to
physics, and in partlcular to Wigner [1], Gelfand-Sapiro [1], Lomont
1], and Boerner [1}].

It has also been necessary to omit the vast literature on represen-
tations of the symmetric group. Fortunately the reader is now able
to consult the excellent book on this topic by Robinson [1].

Many of the results on group representations have been generalized
to infinite groups and also to infinite-dimensionial representations of
topological groups. We have felt that these generalizations do not
properly fall within the scope of this book and, in fact, would require
a lengthy separate presentation.

" The baok has been written in the form of a textbook; a preliminary
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version has been used in several courses. We have assumed that
the reader is familiar with the following topics, which are usually
treated in a ‘“‘standard’ first-year graduate course in algebra: ele-
mentary group theory, commutative rings, elementary number theory,
rudiments of Galois theory, vector spaces, and linear transformations.

We are confident that the expert as well as the student will find
something of interest in this book. We offer no apology, however, for
writing to be understood by a reader unfamiliar with the subject.
In keeping with this objective, we have not always presented results
in their greatest generality, and we have included details which will
sometimes seem tedious to the experienced reader. After serious
deliberation, we decided not to introduce the full machinery of
homological algebra. Although it would have simplified several
sections of the book, we felt that many readers were not likely to
be weil-grounded in homological algebra, and this book was not
intended to be a first course in the. subject.

The first three chapters are written at the level of a first-year
graduate course and include introductory material as well as back-
ground for later chapters. Much of this material may be skimmed
rapidly or omitted entirely at a first reading, though Sections 9-13
should be read with care. :

Chapters IV-VII form a unit containing the structure theory of
semi-simple rings with minimum condition, and the applications of
this theory to group representations and characters.

Chapters IV, VIII, IX, and X form a unit on rings with minimume
condition and finite-dimensional algebras. Chapter IV develops the
theory of the radical and semi-simplicity by the perhaps old-fashioned
method of calculations with idempotents, because idempotents furnish
the main tool in the study of non-semi-simple rings and algebras in
Chapters VIII and IX.

Chapters III and XI form a more or less self-contained account of
algebraic number theory and integral representations of groups.
Some knowledge of earlier chapters is needed, especially in Sections
77-78.

Chapter XII is devoted to the theory of modular representations
and requires aknowledge of parts of all the preceding chapters, The
exact prerequisites for reading Chapter XII are given at the beginning
of the chapter.

For the reader whose main interest is in representations of finite
groups, we may suggest the following sections for a first brief
reading; 9-13, 23-27, 30-34, 38-40, 43-46, 49-50, 54-55, 61, 82-92.

P,
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These sections are to some extent self-contained, provided that the
reader is willing to postpone to the second reading the proofs of
some of the results needed from other sections.

Exercises are included at the end of almost every section.. Some
provide easy checks on the reader’s comprehension of the text; others
are intended to challenge his abilities. Many are important results
in their own right and may occasionally be referred to when. needed
in later sections,

Sections are numbered consecutively throughout the book. A cross
reference to (a.b) refers to Section a and to the bth numbered item
in that section.

There is a fairly large bibliography of works which are either
directly relevant to the text or offer supplementary material of
interest. An attempt has been made to give credit for some of the
major methods and theorems, but we have stopped far short of trying
to trace each theorem to its source.

We are indebted to many persons and organizations for assisting
us with this work. OQur students; friends, colleagues, and families
have listened to us lecture on these subjects, read portions of the
manuscript and proof sheets, made suggestions and corrections, and
given us encouragement. We are deeply appreciative of their kind
help. Our interest in this subject was stimulated by a seminar
conducted at the Institute for Advanced Study in- 1954-1955. We
are indebted to the participants in. that seminar for their help and
to the Institute for making possible the preparation of mimeographed
seminar notes. It is a pleasure to acknowledge the generous support
we have received for the work on this book from the Office of
Naval Research. Finally we are grateful to Interscience Publishers
for publishing it and giving us their patient and friendly cooperation.

Charles W. Curtis
Irving Reiner
June 1962
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CHAPTER I
B_ackgréund from Group Thebry

We presuppose a knowledge of elementary group theory, such
as that which may be obtained from reading introductory material
in any of the following references: M. Hall [2], Kurosh {1], Leder-
mann (1}, or Speiser [2]. In this chapter, some purely group-theo-
retical results are collected which will serve to motivate the later
discussion, to suggest problems which the theory of group represen-
tations might hope to solve, and to develop concepts and thecrems
- needed for the later chapters.

§ 1. Permutation Groups and Orbits

A permutation of a set X is a one-to-one mapping of X onto it-
self. As is well known, the set of all permutations of X forms a
group P(X), in which the product ¢r of a pair of permutations s,
is defined by

(ov)x = a(rx) , xeX.

If X contains more than two elements, P(X) is not commutative.
Any subgroup of P(X) is called a permutation group on X, or a
group of permutations of X. We shall say that the permutations in
P(X) act or operate on the elements of X.

A permutation group G on X gives rise to a partitioning of X
into disjoint subsets. The importance of this simple idea for mathe-
matics can scarcely be overstated. We begin by defining an equiva-
lence relation in X as follows: We say that x is G-equivalent to y
and write x ~ y, provided that :

oax=y for some o€ G.

It is easily verified that G-equivalence is indeed an equivalence
relation. The equivalence classes of X under this relation are called
the orbits in X relative to G. These orbits are disjoint subsets of
X whose union is X. Thus x and y belong to the same orbit if

1
~HNOFE NR g —H



2 GROUP REPRESENTATIONS §1.1

and only if gx = y for some ¢ € G. If there is only one orbit in X
relative to G, we say that G is tramsitive on X. Clearly, P(X) acts
transitively on X; it is easy to see by an example that proper sub-
groups of P(X) may also act transitively on X.

To get some geometric examples of orbits, the reader may con-
gider the set X of all points in the complex plane. If, on the one
hand, G is the group of all rotations about the origin,.the orbits in
X relative to G are the concentric circles about the origin. If, on
the other hand, #, is a fixed non-zero vector and G is taken to be
the set of all translations ‘ '

xX— X+ ate , . a real,

the orhit contammg a complex number x consxsts of all points on
the line through x parallel to u,.

Given a permutation group G on X, an equally important concept
is  that of fmvariance relative to G. A subset Y of X is called in-
variant relative to G if, foreachos € G,9(Y)c Y. Anelementxe X
is invariant relative to G if and only if the orbit of x contains only
x; an orbit consisting of a single element is called frivial.

As a first application of the concept of orbits, consider the
symmetric group S, defined as the group of all permutations.of the
set X={1,2, -++,n}. Let [r] denote the cyclic group generated by
an element = € S,. We call # a ¢ycle if X has only one non-trivial
orbit relative to [n]. Each cycle = cyclically permutes the elements
in its non-trivial orbit; hence it may be written as

= (yrnyn'y --- 2"y)
where ¢ is the smallest positive integer such that #»7 = 1.

Two cycles ry, z, € S, are called disjoint if their non-trivial orbits
are disjoint. It is easily seen that disjoint cycles commute with
each other. Using this fact, we show

(1.1) TueoreM. ZKEvery permutation o € S,, v # 1, is expressible as
a product of disjoint cycles. This expression is unique up to order of
occurrence of the factors. : :

Proor. Let X;, :--, X,, be the distinct orbits of [¢]. Define for
each 7, 1 < i< m, a cycle =; which acts in the same way as ¢ on
X; and as the identity on the rest of X. (We must agree to set
m; = 1 if X; consists of a single element, and still refer to n; as a
cycle.) We find at once that

O =Ty * T,
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a product of disjoint cycles. .

To prove the uniqueness, suppose also that o=r1,---7, is a
product of disjoint cycles, and let X; be the non-trivial orbit of ;.
Then the {X/!} give the orbits of o; hence theyare just a rearrarnge-
ment of the {X;). Permuting the {r.}, we may assume X{ = X, ---,
X! = X,.,q=m. Then, for each {, 1 £i{ < m, r; and =; both act as
o on X;, and each is the identity on the complement of X; in X.
Hence r: = n; for each i. ‘

We remark finally that nmp means “first p; then =,” so that, for
example,

(432)(412)(51)(123)(531) = (14) .

" § 2. Subgroups and Factor Groups

We apply the principles of orbit decomposition and invariance
to the case where the set upon which the permutations act is itself
a group G. 'We shall single out various subgroups of the full permu-
tation group P(G) and study orbits and invariance relative to these
subgroups.

For any element a € G, let a;€ P(G) be the mapping

a; x—ax , ‘ x€G.

Call this map a left multiplication of G; the set of all left multiplica-
tions forms a subgroup G of P(G), by virtue of

cabr=(@b)y, ai'=(@" ), a,beG.

Cayley’s theorem asserts that the map a— a4z, a2 € G, is an isémor-
phism of G onto G;.
Analogously, define for ¢ € G- the map

Qg X — xa , xeG.

Then a— as, a € G, gives an anti-isomorphism of G onto the sub-
G of P(G). We note also that

aibr = braz , a,beG.

Now let H be a subgroup of G, and let H; and Hy be the sets
of left and right multiplications determined by the elements of H.

(2.1) DermrrioNn. The orbits of G relative to H are called right
cosets of H in G, those relative to Hg, left cosets. '
In order to determine the cosets more explicitly, it is convenient
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‘to define multiplication of subsets A and B of G by
AB = {ab: aé’A beB}
Likewise, define
Al ={g":a e A}.

Now let x € G; the orbit of G relative to Hpz containing x is
then xH. Similarly, the right coset containing x is Hx. Since cosets
are orbits, any two left cosets either are disjoint or coincide. If
xH and yH are left cosets, the equation :

(95~ exH = yH

shows that *H and yH have the same cardinal number. If G is a
finite group, we can decompose G into a union of disjoint left cosets,
say, = : '

2.2) G=xHUxHU --- Ux.H.

The number r of distinct left cosets of Hin G is called the mdex
of H in G and is denoted by [G: H]. In keeping with this notation,
we use [G:1] to denote the number of elements in G. From (2.2)
we deduce Lagrange’s theorem:

2.3) : [G:1] = [G: H][H 1].

The . one-to-one mappmg g— g7, ¢ € G, carries the left coset xH
onto the right coset Hx™' and effects a one-to-one tr,ansformatlon_ of
" the collection of left cosets onto the collection of right cosets. There-
fore [G: H] is also the number of distinct right cosets of H in G.

More generally, let H and K be a pair of subgroups of G.
Because

thB=thz, heH,keK,

it follows that H Kz is a subgroup of P(G). The orbits of G rela-
tive to H Ky are called the (H, K)-double cosets in G. Being orbits,
' dlstmct double cosets are disjoint. The (H, K)-double coset contain-
ing x is just HxK. A finite group G also has a decomposition into
disjoint double cosets, say,

G=HuKu .- UHRK .

However, as we shall see, different double cosets may have different
cardinal numbers. For example, let

G=S,,  H={,Q12}, XK={1,03).
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Then the (H, K)-doubly cosetyinyG afe
H1VE={1412), (13), 132)} ,
H-(23)- K = {(23), (123)} .

In general, the number of double cosets need not divide [G:1].

As our next application of orbits and invariance, we shall con-
sider the automorphisms of a group G. An aulomorphism of G is
an element & € P(G) such that

alxy) = ax)a(y) , %yeCG.

Thus @ is -an isomorphism of G onto G. T hé set of all automor-
phisms forms a subgroup A(G) of P(G). Contained in A(G) are the
inner automorphisms {i,, a € G}, defined by

fa: Xx— axa ™, xeG.
We have

i.aib::iab, i;-l:ia"l, a,bEG,
which shows that the set J(G) of all inner automorphisms of Gisa
subgroup of A(G).

(2.4) Dermirion. A subgroup H of G which is invariant relative
to I(G) is called a normal subgroup of G (notation: H A G).
In other words; H is normal in G if and only if

aHa™"' c H forall eae G,
This assertion is easily seen to be equivalent to the statement
. eHa“'=H, . aeG,
and this, in turn, te the important relation
¢H = Ha , aeG.

Thus H is normal in G if and only if every right coset is a left
coset, and vice versa.
If H is a normal subgroup of G, we have ‘

(xHYyH) = xyH , xveG,

and it follows that, relative to set multiplication, the cosets of H in
G form a group. This group is called the factor group of G over
H and is denoted by G/H. If G/H is a finite group, the number of
elements in it is [G: H], the index of Hin G. If G is a finite group
we have at once from (2.3)
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[GIH:1}=[G: H] = [G: 1)/[H:1] .
We recall that a homomorphism of a group G into a group G
is a mapping f: G — G’ such that ,
fan=r@f», xyeG.

Because of the manner in which multiplication in a factor group
GC/H is defined, it is clear that the mapping x— xH of G onto G/H
is a homomorphism, called the natural or canonical homomorphism
of G onto G/H, and that the normal subgroup H can be characterized
as the set of all elements of G mapped onto the identity element of
G/H under this homomorphism.

The next theorem asserts, among other thmgs, that every homo-
morphism arises in this way.

(2.5) TusoreM (Fundamental Theorem on Homomorphisms). Let
. G~ G' be a homomorphism of G onto a group G'. Then

H={xe G fx) =1}
is @ normal subgroup of G called the kermel of f. The mapping
xH— f(x)

is an isomorphism of G/Honto G'. There is a one-to-one inclusion-pre-
serving correspondence between the set of all subgroups K ' of G' and
the subgroups K of G containing H, given by

K-f(K)=K', K=f"(K".
Moreover, K A G if and only if K' A G'. If KAG, we have
(2.6) G/K = G'|IK' = (G/H)(KIH) .

We assume that this result is familiar to the reader and omit
the proof.

(2.7) DerFniTioN. The center of the group G is the subgroup
CG)={xc G:xa=ax for all ¢eG}.

As an immediate application of this definition, we may observe
that the mapping .
a—ri,, ae G,
is a homomorphism of G onto KG), with kernel ¢(G). From the
fundamental homomorphism theorem, we have

G/C(G) = IG) .



