OV TR VS TN =1 sl 7

Analysis Patterns
Reusable Object Models

I et 5
o 41 24 G B
(5 HIAR)

[2] Martin Fowler =%

ANALYSIS

PATTERNS

CiiHER)
—3 /Y9 OOA iR

REUSABLE OBJECT MODELS

MARTIN FOWLER

(EH3) #1 (UML Distilled) & X —EZ
BUGEFFEFEIR A Rbigg s
B Erk, EREESEXINBAAKSEE

m’f@@/ﬁi’,

www.infopower.c

MR - R4TRRRT

Analysis Patterns
Reusable Object Models

ST

[524 G
(W IR)

[#] Martin Fowler %=

TBDRLH L e 14

Analysis Patterns: Reusable Object Models(ISBN 0-201-89542-0)

Martin Fowler

Copyright © 1997 Addison Wesley Longman, Inc.

Original English Language Edition Published by Addison Wesley longman, Inc.

All rights reserved.

Reprinting edition published by PEARSON EDUCATION NORTH ASIA LTD and CHINA
ELECTRIC POWER PRESS, Copyright © 2003.

KRR i1 Pearson Education ¥ BUH e MR EH EEN (B, B RATBRXH
EEMX BN BFEHER. BT,
KEMRE BEF, AMMUEEATREHRPRE BRI .

A IEH Pearson Education Bitht5 %, THEELHHE.

iR EFEEREZS: BT 01-2003-1023

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong SAR and
Macao SAR).

BRTHEARKNMEREN AUBETEEE. RANFHTEXATEEEMX) HHET.

EHERRSE (CIP) ¥iE .

SR ——ATE AN SR/ (£) B (Fowler, M) ¥, —RHE. —Jbtw. $EE
JIiRRAE, 2003

(RRAER « MHETERID

ISBN 7-5083-1518-9

[y A TLHANRES-EFRE-EX V.TP312

H B A P R CIP S F (2003) 38 040107 &

Mg K

A B A FRAR - KETERS

4 AT EAXN SRR GEERD

% ¥*: (%) Martin Fowler

W R & PEBHLE
Moht: JLRETTZRRAK6E ARBIRIG: 100044
Hi%. (010) 88515918 f£E: (010) 88518169

: db R EEENR
T &: FEPBEBEILRRTH
. 787%X1092 1/16 =] B: 2425

: ISBN 7-5083-1518-9

1 2003F7HILRE- R
1 20037 HE—IKEIR]
: 48.00 7T

SN SFa Pk HE

Foreword

When the “Gang of Four” was writing Design Patterns, we knew that there
were lots of software patterns other than object-oriented design patterns. By the
time we were through with the book, we had seen distributed programming
patterns, user interface patterns, and even patterns of organizing software
development groups. However, we hadn't seen any patterns that were clearly
object-oriented analysis patterns. Peter Coad’s patterns were the closest, but
they were a lot like our patterns and it seemed to us that pure analysis patterns
should differ more.

I found what [was looking for when I read a draft of Martin Fowler’s book,
Analysis Patterns. Its patterns contain a lot of domain knowledge yet can be
used in all kinds of business software. Like the design patterns, they are
abstract enough to help your software ride over the bumps of requirement
changes but concrete enough to be understandable. They are not the most
obvious solutions to modeling problems, yet they rang true to me. I had seen
many of these solutions bei';ce, and they had worked.

I'm a designer more tiixn a modeler, and I don’t have a lot of experience in
most of the domains that Martin Fowler describes. Though I felt the patterns
were good, I couldn’t have a lot of confidence in my feelings. Since I read the
book, I have been trying out the patterns on projects and using them in teach-
ing. They work! My confidence grew further when I ran across David Hay’s
book, Data Model Patterns, and realized that, despite their different back-
grounds and vocabularies, they saw many of the same patterns. Patterns are
supposed to describe reality, not invent a new one, and Martin Fowler accu-
rately described the patterns in object-oriented models of business software.
You can have confidence in the patterns he described.

This is not a book of principles that you must learn to apply before they
can help you, though Martin describes many modeling principles. It is not a
book that you have to read through and practice before it can do you any good.
It is a book full of practical patterns that you can use right away. Look for the
chapters that match the kind of problem you are working on now, and you will
find lots of ideas that will belp you. You can read the book chapter by chapter,
and each chapter will give you new ideas.

To make the most of this book, you need to know two things. First, many
of the patterns are more powerful than they might appear at first. Patterns like
Accountability can be applied in nearly any project. Don't read only the chap-
ters that obviously apply to your project, but learn as many patterns as you

vi Foreword

can, and try them out to see whether they apply. Second, make sure your
coworkers read the book. One of the biggest advantages of patterns is that they
help us communicate better. You will find that your team meetings will run
more smoothly when you have a common vocabulary. This book will make
documentation more consistent and easier to understand. Plus, it will make
your coworkers better analysts, and it is more fun to work with people who do
a good job!
— Ralph Johnson

Foreword

When I look at a software development project, I look for experience. Does the
development team have experience doing relevant work? Can they apply their
experience to the objects they build? Unfortunately, the answer to these ques-
tions is often no.

A growing number of us in the object-oriented development community
feel we have misplaced our collective attention for some time. We no longer
need to focus on tools, techniques, notations or even code. We already have in
our hands the machinery to build great programs. When we fail, we fail
because we lack experience.

Martin Fowler has found a way to give us what we need: experience in
book form.

He has done for domain objects what Eric Gamma et al. did for implemen-

‘tation objects in their landmark work Design Patterns: Elements of Reusable
Object-Oriented Software. Martin uses the familiar terminology of our nascent
community but in a different way. He uses the word pattern, for example, not
because he’s duplicating or extending Gamma’s book (or any of the other new
titles bursting onto the market). He calls his written form of experience pat-
terns simply because that is what they are. In his work as a consultant in object
modeling information systems, he repeatedly found solutions to recurring
problems, and discovered the pattern form in the process.

Martin Fowler easily could have written a book on object-oriented analy-
sis. Luckily, he didn’t. Instead we have a book cataloging the result of analysis.
Each chapter reports the conclusion of his (and his colleagues’) analytic efforts
applied to common business problems. The domains addressed vary from
medical record keeping to financial derivative trading, with several stops in
between. Which chapters apply to you? Amazingly, they all do. Martin places
each problem in a context and then offers a solution for that context. You will
see familiar aspects in every context. You will recognize the problems. You will
appreciate the results. And there it is: experience.

Finally, Martin writes in a personal style, relaying his thoughts and judg-
ments. We feel his respect for his clients and colleagues from whom, he admits,
most insights arise. We watch him keep his distance from the vagaries of
implementation while still preserving implementability—a tightrope walk that
defies direct explanation. As we see into the mind of an expert analyst, we gain
a lesson in the how-to of analysis that adds to our own store of experience.

—Ward Cunningham
Cunningham & Cunningham, Inc.

vii

Preface

Not long ago, no books were available on object-oriented analysis and design.
Now there are so many that it is impossible for any practitioner to keep up
with them all. Most of these books concentrate on teaching a notation, suggest-
ing a simple process for modeling, and illustrating it with a few simple exam-
ples. Analysis Patterns: Reusable Object Models is a different kind of book.
Instead of focusing on the process—how to do modeling—it concentrates on
the result of the process—the models themselves.

I am a consultant in object modeling for information systems. Clients ask
me to train staff on modeling and to provide mentoring on projects. Much of
my skill comes from a knowledge of modeling techniques and how to use
them. More important, however, is my experience in actually creating many
models and regularly seeing problems repeat themselves. Frequently I find
that many aspects of a project revisit problems I have faced before. That expe-
rience allows me to reuse models I have built before, improve them, and
adapt them to new demands.

Over the last few years, more and more people have also become aware of
this phenomenon. We have realized that the typical methodology books,
though valuable, only present the first step in a learning process that must
also capture the actual things that are built. This realization has flowered into
the patterns movement. This is a varied group of people, representing many
different interests and opinions yet sharing the goal of propagating useful
patterns of software systems.

As a result of the diversity of this patterns community, we have had diffi-
culty in defining the term pattern. We all think we can recognize a pattern
when we see it, we think most of us would agree in most cases, but we
cannot come up with a single definition. Here is my definition: A pattern is
an idea that has been useful in one practical context and will probably be
useful in others.

I like to leave the definition quite loose because I wish to stay as close to
the underlying motivation of patterns, without adding too many restrictive
amendments. A pattern can have many forms, and each form adds specializa-
tions that are useful for that kind of pattern. (Section 1.2 discusses the
current state of the patterns world and where this book fits in.)

This book is about patterns in analysis, patterns that reflect conceptual
structures of business processes rather than actual software implementations.
Most of the chapters discuss patterns for various businéss domains. Such

xv

Xvi

Preface

patterns are hard to classify into traditional vertical areas (manufacturing,
finance, health care, and so on} because they are often useful in several areas.
These patterns are important because they help us to understand how people
perceive the world. It is valuable to base a computer system’s design on this
perception and, indeed, to change that perception—which is where business
process reengineering (BPR) comes in.

Conceptual patterns cannot exist in isolation, however. Conceptual
models are only useful to software engineers if they can see how to imple-
ment them. In this book I present patterns that can be used to turn conceptual
models into software, and I discuss how that software fits into an architecture
for a large information system. I also discuss specific implementation tips
with the patterns.

I wrote this book because this was the book that I wanted to read when I
started out. Modelers will find ideas in this book to help them begin working
in a new domain. The patterns contain useful models, the reasoning behind
their designs, and when they should and should not be applied. With this
information a modeler can adapt the models to fit a specific problem.

The patterns in this book can also be used in reviewing models—to see
what might have been left out and to suggest some alternatives that may lead
to improvement. When I review a project, I usually compare what I see with
the patterns I have learned from previous work. I have found that being
aware of patterns in my work helps me to apply my past experiences more
easily. Patterns like this also uncover modeling issues that go beyond what
can be covered in a simple text book. By discussing why we model things the
way we do, we gain a greater understanding of how to improve our modeling,
even if we don’t use the patterns directly.

Structure of this Book

This book is divided into two sections. The first section covers analysis pat-
terns, which are patterns from conceptual business models. They provide key
abstractions from domains such as trading, measurement, accounting, and
organizational relationships. The patterns are conceptual because they repre-
sent the way people think about the business, rather than the way a computer
system is designed. The chapters in this section stress alternative patterns
that can be used, and the strengths and weaknesses of those alternatives.
Although each pattern will clearly be useful to those working in the same
domain, the basic pattern is often useful in other domains.

The second section focuses on support patterns, which help you use
analysis patterns. Support patterns show how analysis patterns fit into an
information systems architecture, how the constructs of conceptual models

Preface xvii

turn into software interfaces and implementations, and how certain advanced
modeling constructs relate to simpler structures.

To describe these patterns, I need a notation. The appendix provides a
brief discussion of the notation I use and what the symbols mean. I do not use
a single method but prefer to mix techniques from different methods. The
appendix is not designed to be a tutorial on techniques, but it should provide
an outline and refresh your memory. It also tells you where to find a tutorial
on the techniques I use.

Each section is divided into chapters. Each chapter on analysis patterns
contains patterns that are related by a loose notion of subject area, influenced
by the projects that spawned them. This organization reflects the fact that any
pattern must come from a practical context. Each pattern appears in its own
subsection within a chapter. I do not use any of the formal headings for pat-
terns that are used by some patterns authors (see Section 1.2.2). I describe
each pattern in a form that is as close to the original project form as is reason-
able, with a minimum of abstraction. I add examples to show the use of the
pattern within its original domain and also to suggest how the pattern might
be used in other domains. One of the greatest difficulties of patterns is
abstracting them into other domains; I follow the principle that this should
be left to the reader (see Section 1.2.3).

This book is thus a catalog, rather than a book to be read from cover to
cover. | have tried to write each chapter in such a way that it can be read
independently from the other chapters. (This is not always possible, how-
ever. Whenever a chapter requires that another chapter be read first, I say so
in the chapter introduction.) Each chapter has an introduction that explains
the general subject area of the chapter, summarizes the patterns in the chap-
ter, and says what projects the patterns originated from.

How to Read this Book

I suggest reading all of Chapter 1 first and then reading each chapter intro-
duction. Then feel free'to delve into the chapters in any order you like. If you
are not familiar with the approach 1 take to modeling, or the notation and
concepts I use, read the appendix. The Table of Patterns gives a brief
summary of what each pattern is about, so you can use that to help you
explore or to find a pattern when you come back to the book at a later time. It
is important to stress that each pattern in this book is useful outside the
domain that gave it birth. Thus [encourage you to look into chapters that you
might think are outside your field of interest. For example, I found that
models of observation and measurement designed for health care proved to
be very useful for corporate financial analysis.

xviii

Preface

Who Should Read this Book

This book can be useful to a range of readers, although different readers will
learn different things from it and may need some different preparations.

I expect my biggest audience to be analysts and designers of object-
oriented (OO) computer systems, particularly those working at the analysis
end. Such readers should have made at least some use of an OO analysis and
design method. This book does not provide any introduction to this subject,
so I would suggest first reading a book on OO analysis and design if you are
new to this field. I must stress that the patterns in this book are conceptual in
nature, and I use a very conceptual approach to modeling. This leads to some
stylistic differences from those texts that use a more implementation-based
approach to modeling.

A small, but very important, audience consists of those people who act as
domain experts for a modeling project. Such readers do not require a knowl-
edge of computers but do need to know about conceptual modeling. One of
the main reasons I use conceptual models in this book is to make things
easier for this group of readers. The modeling project here may be analysis
for computer system development or BPR. I have taught many professionals
(including doctors, financial traders, accountants, nurses, and payroll super-
visors) this kind of modeling and have found that a software background is
neither an advantage nor a disadvantage to conceptual modeling. The busi-
ness model patterns are as much about business modeling as they are about
computer systems analysis (see Section 1.4). Any such reader should take a
course on OO analysis that stresses the conceptual aspect. (Odell’s book [1] is
particularly valuable in this respect.)

I hope many programmers will delve between these covers, although
some programmers may take exception to the lack of code and the conceptual
slant. For these readers I suggest you take particular note of Chapter 14,
which should help to explain the relationship between the conceptual
models and the resulting software.

This is an object-oriented book, and I do not hesitate in proclaiming my
belief that the object-oriented approach is the superior way to develop soft-
ware. These models, however, are primarily conceptual models, and many
data modelers have had a long tradition of using conceptual (or logical)
models. Data modelers should find many of the patterns useful, particularly
if they use more advanced semantic techniques. The object-oriented features
of the models will reveal many of the differences between object-oriented
and traditional approaches. I would encourage such readers to use this book
in conjunction with an OO analysis book that stresses the conceptual side of
modeling and the links between OO and semantic data modeling.

Preface xix

Managers will find the book useful as a starting point for development
activity. Starting from a pattern can help to clarify goals, and project planning
can take advantage of the broad ground that patterns map out.

I have not aimed this book at students. I've written it more for the profes-
sional software engineer. I hope, however, that some students will take a
look. When I was learning analysis and design, I found it difficult because
there were few good examples I could learn from, examples that came out of
the world outside the university. Just as looking at good code can teach you a
lot about programming, looking at good models can teach you a lot about
analysis and design.

A Living Book

Every author I know shares a frustration: Once a book is published it is fixed.
The book spreads its advice around the community, yet the author has little
way of expressing changes. I know how much I keep learning, and I am sure
this learning will modify my ideas. I want these changes to be passed on to
my readers.

With this book, Addison-Wesley will provide a web site <http://
www.aw.com/cp/fowler.html> which will be used to pass on further materi-
als to keep this book alive. At this stage I am not sure exactly what it will
contain, but I expect the following:

¢ any new things I learn about the patterns in the book.
e answers to questions about the book
¢ useful commentary from others about the patterns

* new analysis patterns by myself, and by others

when the Unified Modeling Notation appears (or whatever it is called by
then) I will redraw all the diagrams in the book in the new notation and
put them on the site.

This site will be a complement to the book, so keep an eye on it and use
it to let me know how to improve and develop the ideas between these pages.

Acknowledgments

Any author is indebted to many others who help. For this book this is partic-
ularly true since so many of the patterns were built with the help of my cli-
ents, colleagues, and friends. I would like to give my sincere thanks to the
following, both named and implied.

First and foremost, Jim Odell has been an essential part of my career. He
has taught me much about developing information systems and has been a

xx Preface

constant source of inspiration, helpful advice, and strange humor. I can safely
say that without his support this book would not have happened.

The team at Coopers & Lybrand in London helped with much of the early
work and helped pass many evenings at Smithfield’s.

John Edwards formed many of my early ideas about conceptual modeling
and its role in software development, as well as introducing me to many
interesting ideas, including those of Christopher Alexander.

John Hope urged me to think of the domain first and technology second,
as well as casting a helpful spell at several key points in my career.

Tom Cairns and Mark Thursz, doctors at St. Mary’s Hospital in London,
worked with me in developing the health care models that form the basis of
Chapters 2, 3, and 8. They are proof that a computer background is not neces-
sary to be a top-class conceptual modeler. Mark also was a willing source for
health care examples with impressive-sounding medical terminology.

The health care projects also involved many software and health care
professionals from St. Mary’s, the Hospital for Sick Children (HSC), St.
Thomas’s Hospital, and the University of Wales. Anne Casey, a nurse at HSC,
and Hazim Timimi, an analyst, helped put together the final Cosmos model.
Gerry Gold set up this work and made sure it kept going.

Brad Kain has had a great impact on my thinking on reuse and compo-
nents, as well as undertaking the important task of showing me the nightlife
of Boston.

Applying the health care models to corporate finance in Chapter 4 was the
experience that, for me, proved the usefulness of analysis patterns across dif-
ferent domains. Lynne Halpin and Craig Lockwood led the MBFW team at
Xerox, and Vivek Salgar got our conceptual ideas into the brutal reality of C++.

David Creager, Steve Shepherd, and their team at Citibank worked with
me in developing the models from which I drew the financial patterns in
Chapters 9-11. They also further developed many of the architectural ideas
of Chapter 12 from their health care origins, and taught me much about the
frenetic life in The City.

Fred Peel set up and maintained my work at Citibank, when not scaring
me with his driving. Daniel Poon and Hazim Timimi from Valbecc got many
of my fuzzy ideas into detailed specifications.

The accounting patterns in Chapter 6 have had a long gestation. Tom
Daly, Peter Swettenham, Tom Hadfield, and their respective teams developed
models that gave birth to the patterns in this book. Rich Garzaniti got my
accounting terminology sorted out. Kent Beck did much to improve my
Smalltalk.

Chapter 14 was written with the help of James Odell.

Preface xxi

I have been very much a latecomer to the patterns community, getting to
know it well only after most of this book was written. It is a very open and
friendly group that has done much to encourage my work. Kent Beck, Ward
Cunningham, and Jim Coplein encouraged me to get involved with the com-
munity and to develop my ideas as patterns. Ralph Johnson provided particu-
larly helpful comments on the first draft of this book.

I have had first-class comments from my many reviewers whom I would
like to name: Dave Collins, Ward Cunningham (Cunningham & Cunningham,
Inc.), Henry A. Etlinger (Department of Computer Science, RIT), Donald G.
Firesmith (Knowledge Systems Corporation), Erich Gamma, Adele Goldberg,
Tom Hadfield (TesserAct Technology), Lynne Halpin (Netscape Communica-
tions), Brian Henderson-Sellers, Neil Hunt (Pure Software), Ralph E. Johnson
(University of Illinois at Urbana-Champaign), Jean-Pierre Kuilboer (Univer-
sity of Massachusetts, Boston), Patrick D. Logan (Intel Corporation), James
Odell, Charles Richter (Objective Engineering, Inc.), Douglas C. Schmidt
(Washington University), and Dan Tasker. I will mention that Don Firesmith
went above the call of duty in tracking down problems that needed to be
fixed.

As this is my first book, I'm particularly grateful to those at Addison-
Wesley who helped me through the process. Carter Shanklin directed affairs
and assembled a formidable panel of reviewers with much assistance from
Angela Buenning. Teri Hyde coordinated the book production on a painfully
tight schedule and Barbara Conway rescued my prose from its usual erratic
state, and ruthlessly eliminated my native accent.

References

1. Martin, J., and J. Odell. Object-Oriented Methods: A Foundation. Englewood Cliffs,
NJ: Prentice-Hall, 1995.

Contents

Foreword v
Foreword vii
Preface xv

Chapter 1. Introduction 1
1.1 Conceptual Models 1
1.2 The World of Patterns 4
1.3 The Patterns in this Book 8
1.4 Conceptual Models and Business Process Reengineering 10
1.5 Patterns and Frameworks 11
1.6 Using the Patterns 11
References 14

Part 1. Analysis Patterns 15

Chapter 2. Accountability 17
21 Party 18
2.2 Organization Hierarchies 19
2.3 Organization Structure 21
2.4 Accountability 22
2.5 Accountability Knowledge Level 24
2.6 Party Type Generalizations 27
2.7 Hierarchic Accountability 28
2.8 Operating Scopes 30
29 Post 32
References 33
Chapter 3. Observations and Measurements 35
3.1 Quantity 36
3.2 Conversion Ratio 38
3.3 Compound Units 39
3.4 Measurement 41
3.5 Observation 42
3.6 Subtyping Observation Concepts 46
3.7 Protocol 46
3.8 Dual Time Record 47

x Contents

3.9 Rejected Observation 48

3.10 Active Observation, Hypothesis, and Projection 49
3.11 Associated Observation 50

3.12 Process of Observation 51

References 55

Chapter 4. Observations for Corporate Finance 57
4.1 Enterprise Segment 59
4.2 Measurement Protocol 65
4.3 Range 76
4.4 Phenomenon with Range 77
4.5 Using the Resulting Framework 82
References 83

Chapter 5. Referring to Objects 85
5.1 Name 86
5.2 Identification Scheme 88
5.3 Object Merge 90
5.4 Object Equivalence 92
References 93

Chapter 6. Inventory and Accounting 95
6.1 Account 97
6.2 Transactions 98
6.3 Summary Account 101
6.4 Memo Account 103
6.5 Posting Rules 104
6.6 Individual Instance Method 106
6.7 Posting Rule Execution 111
6.8 Posting Rules for Many Accounts 116
6.9 Choosing Entries 118
6.10 Accounting Practice 119
6.11 Sources of an Entry 122
6.12 Balance Sheet and Income Statement 123
6.13 Corresponding Account 124
6.14 Specialized Account Model 125
6.15 Booking Entries to Multiple Accounts 127
Further Reading 132
References 132

Contents xi

Chapter 7.

Using the Accounting Models 133

7.1 Structural Models 134

7.2 Implementing the Structure 137

7.3 Setting Up New Phone Services 138

7.4 Setting Up Calls 142

7.5 Implementing Account-based Firing 143
7.6 Separating Calls into Day and Evening 143
7.7 Charging for Time 145

7.8 Calculating the Tax 148

7.9 Concluding Thoughts 150

References 155

Chapter 8.

Planning 157

8.1 Proposed and Implemented Action 158
8.2 Completed and Abandoned Actions 160
8.3 Suspension 161

8.4 Plan 162

8.5 Protocol 165

8.6 Resource Allocation 168

8.7 Outcome and Start Functions 172
References 174

Chapter 9.

Trading 175

9.1 Contract 176
9.2 Portfolioc 180
9.3 Quote 185
9.4 Scenario 188
References 196

Chapter 10.

Derivative Contracts 197

10.1 Forward Contracts 198

10.2 Options 200

10.3 Product 205

10.4 Subtype State Machines 211

10.5 Parallel Application and Domain Hierarchies
References 223

216

xii Contents

Chapter 11. Trading Packages 225
11.1 Multiple Access Levels to a Package 226
11.2 Mutual Visibility 230
11.3 Subtyping Packages 233
11.4 Concluding Thoughts 234
References 235

Part 2. Support Patterns 237

Chapter 12. Layered Architecture for Information Systems 239
12.1 Two-Tier Architecture 240
12.2 Three-Tier Architecture 242
12.3 Presentation and Application Logic 245
12.4 Database Interaction 251
12.5 Concluding Thoughts 255
References 256

Chapter 13. Application Facades 257
13.1 A Health Care Example 258
13.2 Contents of a Facade 259
13.3 Common Methods 262
13.4 Operations 264
13.5 Type Conversions 265
13.6 Multiple Facades 267
References 269
Chapter 14. Patterns for Type Model
Design Templates 271
14.1 Implementing Associations 274
14.2 Implementing Generalization 281
14.3 Object Creation 289
14.4 Object Destruction 290
14.5 Entry Point 291
14.6 Implementing Constraints 294
14.7 Design Templates for Other Techniques 295
References 295

