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FOREWORD

Our aim is to give a detailed description of fixed point theory and topo-
logical degree theory starting from elementary considerations and to explain
how this theory is used in the study of nonlinear. differential equations,
ordinary and partial. The reader is expected to have a fair knowledge of
advanced calculus, especially the point set theory of Euclidean n-space, but
no further knowledge of topology is assumed: (Following this introduction
is a list of definitions and notations from advanced calculus which will be
used in the text.)

Why topological methods are used. It is easy to see that the solution
z(t) of the differential equation -

d%x
d?-j—x=0,

such that 2(0) = 0 and dz(0)/dt = 1,isz = sint. In finding this solution, we
have obtained complete quantitative information, i.e., for any given value
of £, we can find the corresponding value z(t) by referring to a table of trigono-
metric functions. However, we have also obtained other useful information
called qualitative or “in the large” information: we know that the values
z(t) are betwegn —1 and '+ 1 and that x(¢) has period 2.

If all differential equations could be solved as easily, it would be unnecessary
to introduce the distinction between quantitative and qualitative informa-
tion concerning solutions. But this example is an exceptionally simple one.
Most differential equations, especially nonlinear equations, must be studied
with one technique to obtain quantitative information and by another to
obtain qualitative information. Ifa method can be derived for finding the
numerical values of the solution corresponding to given values of the in-
dependent variable, this method will usually not give us qualitative informa-
tion. For example, to determine if the solution is periodic requires a different
approach.

The topological methods we describe will give us qualitative information,
e.g., information about the existence and stability of periodic solutions of
ordinary differential equations and the existence of solutions of certain partial
differential equations. However, they will gives no quantitative informa-
tion, i.e., no information about how to. compute any of the solution values.
At best, we will get upper and lower bounds for solution values. The
information that the-topological methods give us is thus incomplete.

Nevertheless, topological methods are used because at present there are
no other methods that yield as much qualitative information with so little
effort. It is possible to envision a future in which topological methods will

VI



FOREWORD vii

be supplanted by more efficient methods, but so far there is little encourage-
ment for doing so. Such a venerable technique as the Poincaré-Bendixson
Theorem has not been essentially improved in over sixty years although it is
widely used. (The Poincaré-Bendixson Theorem is not one of the techniques
which we will describe but as will be seen in Chapter II, I’ is intimately
related to one of these techniques.)

The topological techniques to be developed. The two techniques to be
developed, the fixed point theorem and local topological degree, are closely
connected. The fixed point theorem has the advantage of being a com-
paratively elementary theorem (it can be proved without using any ‘topo-
logical machinery”) which has many useful applications. The topological
degree theory requires lengthier considerations for its development, but it
has an important advantage oVer the fixed point theorem: it gives informa-
tion about the number of distinet solutions, continuous families of solutions,
and stability of solutions.

When to use topological techniques. We shall mostly be concerned with
the question of how to apply topological techniques. The question of when
to apply them is equally important. There can be no precise answer to the
question, but we can formulate a rough rule. If we use an analytica. method
(like successive approximations), we establish existence and uniqueness of
solution and a method (not necessarily practical) for computing the solution.
If analytical means fail and especially if there seetns to be no way to establish
uniqueness, then we turn to the weaker question of establishing mere
existence. For answering this weaker question, the topological methods
(cruder and yielding less information than analytical methods) sometimes
suffice. Thus topological methods should be regarded as a last resort or at
least a later resort than analytical methods.

Summary of contents. In Chapter I, a definition of the local topological
degree in Euclidean n-space is given, the basic properties of topological
degree are derived, and some methods for computing the degree are described.
Also the Brouwer Theorem (the fixed point theorem in Euclidean n-space) is
obtained. In Chapter Il, the techniques described in Chapter I are applied
to some problems in ordinary differential equations: existence and stability
of periodic and almost periodic solutions. In Chapter III, the Euclidean
n-space techniques developed in Chapter I are extended to spaces of arbitrary
dimension. We obtain the Leray-Schauder degree and the Schauder and
Banach fixed point theorems for mappings in Banach space. We obtain
also a combination of analytical and topological techniques which can be
used to study local problems in Banach space. Finally in Chapter IV, the
theory developed in Chapter III is applied to integral equations, partial
differential equations and to some further problems on periodic solutions of
ordinary differential equations.
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The applications in Chapters Il and IV are treated in varying detail.
Existence of periodic solutions of nonautonomous ordinary differential
equations is treated in complete detail. Stability of periodic solutions is
treated in full detail except for the basic stability theorem of Lyapunov
which is stated without proof. The other topics in Chapter II are similarly
treated: certain theorems, particularly those from other disciplines, are
stated without proof. In Chapter IV, an elaborate apparatus of theorems
from analysis must be used in applying the Leray-Schauder theory and the
Schauder Fixed Point Theorem. Some of these theorems have lengthy and
complicated proofs and we restrict ourselves to glvmg references for these
proofs.

The numbering of definitions, theorems, etc., is done independently in
each chapter. Unless otherwise stated, references to a numbered item
means that item in the chapter in which the reference is made. E.g., if in
Chapter II, reference is made to Theorem (3.8), that means Theorem (3.8)
in Chapter II.

Some Terminology and Notation Used in This Text

| denotes end of proof.

nasc is abbreviation for necessary and sifficient condition.

Set notation '

: element of

: not an element of

union

: intersection

: difference

: null set

: contained in

: complement of set 4

: Cartesian product of sets A and B, i.e., the set of all
ordered pairs (a, b) whereac 4, be B.

The set of elements having property P is denoted by:

buh:n&Wngm

A x

[x / x has property P].
If a, b are real numbers such that @ < b, the following notation is used to
indicate the various intervals:
{a,b] =[xreal [a S x = 'b],
[@,b) =[x real [a £ x < b],
(@,b] =[xreal Ja < x £ D),
(a2,b) = [z real [a < x < b].

[a, b] is called a closed interval and (g, b) is called an open interval. R"
denotes real Euclidean n-space, i.e., the collection of n-tuples of real numbers
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(%1, * -, %,). The elements of R" will be denoted by single letters, p, g, - -
when this is possible. If p=(p,,---, p,) and Ais a real number, then
Ap = (Apy, - -+, Apy)-
In particular, .
(“'l)p = (=P, —Dy).
pr = (pl: s Pa) and q=(q"" '.’ 9z) t’hen
Ptg=(p1+ 900t )
The distance between points p and q, denoted by |p — g, is:

[P = q| =U(pr — @) + -+ + (pn — ¢,)*I2
If p € R™, the neighborhoods of p are the sets:

Nyp) =[q/|p — q| < el

where ¢ is an arbitrary positive number. A set O in R* is open if for each
point p € O, there is a neighborhood N,(p) of p such that N (p) C O. A set
F in R" is closed if F° is open. A point p is a limit point (cluster point,
accumulation point) of a set E in R" if each neighborhood of p contains at
least one point of E distincet from p. (Point p may or may not be in E.) If
D C R", a boundary point of D is a point p such that each neighborhood of
p contains a point of D and a_point of D°. (A boundary point of D may or
may not be in D.) The collection of boundary points of D is denoted by D’.
The set DU D’ (also denoted by D) is called the closure of D. The set
Dy D’is a closed set. If there is a neighborhood N,(p) of a point p such
that N.(p) is contained in a set E, then p is an interior point of E.

A metric space is-a collection M of points p, q, - - - for which a function p
from M x M into the non-negative real numbers is defined such that:

(1) p(p,q) > 0if and only if p # ¢;
(2) plps 9) = plg, P);
(3) pl2, 1) = plp, @) + plg. 7).

All the concepts defined for B*,i.e., neighborhood, open set, closed set, etc.,
may be defined for a metric space by using the same definitions given for
R" only with |p — g| replaced by p(p, q).

A separable metric space is a metric space M such that there is a denumer- -
able subset [x,] of M such that the closure of [z,] is M.

A connected set in a metric space M is a set S such that S is not the union
of two disjoint nonempty sets A and B which are contained in disjoint open
sets. :

A component of an open set O in a metric space is a maximal connected
subset of O. )

A locally connected metric space is a metric space M such that if peM
and N,.(p) is a neighborhood of p then there is a connected neighborhood
of p which is contained in .,N,( ).
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If A is a subset of a metric space M, the diameter of A islub,, . 4 p(a, b).
If A, B are disjoint subsets of a metric space M, then the distance between
4 and Bis

glb  p(a, b)

acA; beB (a,b)eAxB
and is denoted by d(4, B).

A function f from a metric space M, into a metric space M, is 1-1 if p,
g€ M, and p # g imply f(p) # f(g)-

Function f from metric space M, into metric space M, is continuous if for
each open set O in M, the set f~1(0), where f~! is the inverse of f, is also
open.

If f is a 1-1 continuous function from M, into M, and if f -1 is continuous,
then f is a homeomorphism from M, onto f(M,).

If f is a function from metric space M, into metric space M, and if 4 is a
subset of M,, then f/4 denotes the function f regarded only on 4, i.e., the
function with domain A4 such that if z € A, then the functional value is f(x).
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CuarTER 1

Topological Techniques in Euclidean n-space

Introduction. The two topological concepts we use are the fixed point
theorem and local topological degree (hereafter to be termed local degree or
degree). The fixed point theorem is couched in simple terms and we will be
able to state it with practically no introduction. But describing the local
degree theory is lengthier. The description to be given (which is essentially
the singular homology definition in Alexandroff-Hopf [1]) was chosen because
it includes the “order” viewpoint and the ‘““covering number” viewpoint
and therefore seems to be the most suggestive of ways to compute the Jocal
degree. (For use in applications, we will have to make such computations.)

Nevertheless we describe briefly other methods of defining local degree.
The earliest version is the definition in terms of the Kronecker integral, i.e.,
the degree is defined to be equal to a certain integral and the standard
properties of the local degree are then proved. (See Alexandroff-Hopf [1,
pp. 465-467] for discussion and references.) This definition holds only for
differentiable mappings and does not give much basis for computing the
degree. (Computing the integral iteelf is generally difficuit.) Also we
cannot obtain from this definition a theorem relating the degree and the
number of solutions of a corresponding equation. Such a theorem is of
considerable importance in applications. Another definition based entirely
upon real analysis is given by Nagumo [1]. This definition is not long but
would require some extension if it were to make a satisfactory basis for
developing methods of computing the degree. A definition of degree in
terms of cohomology is given by Rado and Reichelderfer [1]. From the
point of view of a topologist, this is a more desirable definition than the
one we give. It has, however, the disadvantages that it does not have as
clear a geometric meaning as the Alexandroff-Hopf definition that we use
(see Rado and Reichelderfer {1, p. 120, footnote 1]) and also it yields fewer
suggestions for computing the degree. If the degree is defined only for
mappings from the plane into itself, a much shorter definition can be given
(see Alexandroff-Hopf[1, p. 464]). But it is important for later applications
that our definition be applicable to mappings in Euclidean space of arbitrary
finite dimension. '

1. The fixed point theorem. The fixed point theorem says that if f is a
continuous mapping of a solid sphere into itself, then f takes at least one
point into itself, i.e., f leaves at least one point fixed. In the precise state-
ment of the theorem which follows, we include a slightly wider class of sets
than spheres.

1



TOPOLOGICAL TECHNIQUES IN EUCLIDEAN 72-SPACE

DEFINITION. A topological mapping g of a set E C R" into R™ is a 1-1
continuous mapping such that g~* is also continuous.

NoraTioN, Let o™ denote the solid unit sphere in R*, i.e.,
0'"=[($1,---,23n)/1§ +;"+x12i = l]-

(1.1) BRouwER F1XED PoINT THEOREM. ILet B® — g(a™) where g is a topo-
logical mapping. Let f be a continuous mapping of B™ into itself. Then there
i3 an element x of B™ such that x = f(), i.e., the mapping f has a fixed point.

This theorem is intuitively reasonable in the sense that any mapping f
that one considers clearly does have such a fixed point. However, this
observation is far from a proof of the theorem.

We will postpone proving the theorem until we have defined the local
degree. The comparatively sophisticated degree theory will make possible
a very short proof of the fixed point theorem. There are elementary proofs
of the theorem, i.e., proofs which require few facts about topology (see
Alexandroff-Hopf [1, p. 376 ff.]). As might be expected, an elementary
proof is somewhat longer.

The fixed point theorem illustrates some typical traits of qualitative
techniques. In terms of analysis, the theorem tells us that under certain
circumstances the equation in R®,

(1.2) z— f(x) =0,

has at least one solution. The theorem has two disadvantages: first it gives
no information about how to find (i.e., compute) a solution of (1.2); secondly,
it gives no information about how many solutions (1.2) has beyond the
statement that (1.2) has at least one solution. Equation (1.2) may have
just one solution or it may have an infinite set of solutions. For example:
if B = o™ and fis the identity mapping, then every point x € o™ is a solution
ofz — f(z) = 0;if B* = o? and fis a rotation of = radians, the only solution
of (1.2) is (0, 0). ,

The first disadvantage, that no method for computing the solution is
given, is inherent in the qualitative approach. A qualitative method usually
establishes only the existence of a solution. When a qualitative method is
used, we must expect to regard the computation of the solution as a separate
problem. The second disadvantage, that no indication of the number of
solutions is given, will be remedied when we have developed the local degree.
At the cost of developing some topological “machinery,” we will obtain
estimates on the number of solutions.

+ 2. The order of a point relative to a cycle. From the viewpoint of the
analyst who wishes to apply degree theory, the local degree is a kind of
estimate of the number of points mapped into a given point by a given
mapping. If f is a continuous mapping from Euclidean n-space R" into
R, then the degree of f at point p € R™ is to be an estimate of the number of



A POINT RELATIVE TO A CYCLE 3

points mapped by f into point p (these points are called p-points). We will
require that this estimate remain unchanged or invariant if the mapping
f or the point p is varied slightly. (As will be seen later, this condition is
of crucial importance in applications of degree in analysis.) This important
requirement of invariance unfortunately excludes the possibility of making
the definition of degree the simplest possible one, i.e., defining the degree of
f at point p as equal to the number of p-points of f. For suppose f is the
mapping of R! into R! defined by
fra—>a

where ¥’ = z%., Then, if the degree were simply the number of p-points,
the degree of f at 0 would be one. However, if our mapping f were changed
to

oz

where " = 2 + ¢ and ¢ is a small positive number, then the degree of f at
0 would be zero no matter how small ¢ were chosen. If ¢ were a negative
number, no matter how close to zero, the degree of f, at 0 would be two.
Thus our requirement of invariance of the degree under small changes of f
could not be satisfied.

To remedy this, we count the points mapped by f into p in a special way.
Each p-point is counted with a plus or minus sign depending on whether the
mapping f maps the points near the p-point so that directions are preserved
orreversed. For example, if f is the mapping from R! into R!:

fx—>2%— ¢

where ¢ is a positive number, the mapping f takes the interval [0, 8] where
82 > e onto the interval [ —¢, 82 — ¢] without changing directions on [0, &].
On the other hand, the interval [— 8, 0] which is also mapped onto
[—e, 8% — £] is “flipped over” in the process of being mapped. Roughly
speaking, its direction is reversed. The 0-point 4/¢ is counted with a plus
sign and the 0-point — 4/¢ is counted with a negative sign; hence we say that
the degree of f at 0 is zero. With this definition, the degree is a crude
estimate of the number of p-points—crude in that if the degree is nonzero,
then there exists at least one p-point but if the degree is zero then there may
be p-points (as in the example described) or there may be none at all.

The preceding is clearly far from a precise definition. We have not even
said exactly what is meant by ““flipping over” or reversing directions, much
less given any indication of how this is done in an n-space R* where n > 1.

Qur first purpose is to show that the rough description of degree given
above can be made into a precise definition for continuous mappings in
Euclidean n-spaces. Then we define exactly what is to be meant by chang-
ing the mapping continuously, and prove that the degree is invariant under
such changes. This fairly lengthy procedure will occupy the next five
sections of Chapter I.
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In order to define the degree of a mapping at a point, we will need some
“combinatorial” concepts. The purpose of introducing these concepts is to
make possible the definition of the order of a point relative to a cycle. This
notion of order can be regarded as the simplest version of the local degree,

CELLS, CHAINS, AND CYCLES.

DzrinrTION. A conver set B C R is a set with the property: if a, be E
then all points Aa + pb where 0 S A £ 1,0 S u < l,and A + p = 1, are
contained in E.

Remark. It follows from the definition that if {C,} is a collection (finite
or infinite) of convex sets, then (M,0, is convex.

DeriniTioN. Let ag, ay,- - -, a, be & finite set of distinet points in R*.
The convex hull of a,, a,,- - -, a, is the convex set which is the intersection
of all the convex sets which contain a,, a,, - - -, a,. We denote the convex
hull by a4a,- - -a,.

DxrinrTioN. Let U be an open set in B*. (In particular U may be R
itself.) - Let ay, ay, - - -, a, be a set of (¢ + 1) distinet points in U such that
agty - - -a, C U. The set aya,- - -a, is a g-cell in U or a cell of order g in U.
The g-cell will sometimes be denoted by z°. (Also, if the superscript g is
not needed, it will be omitted.) The points @y, a,, - - -, @, are the vertices of
7,

_DErmNrmion.  Ifay,, - - -, @, is a subset of ag,a,, - - -,a,8uchthata, - - -a,

is a subset of the boundary of aya, - - -a, then ay, - - -a,_ is a side of aga,- - -a,

ap Go
a a a,
G0 a,
a
a o 1 a

az a3
Z-cell Two 3-cells o

O-cell 1-cell

Ficure 1. SoMmEe ceLLs 1N R?

DerinrTion. Consider the collection of all orderings of the vertices of a
cell z7. Two orderings are equivalent if one can be obtained from the other
by an even permutation of the vertices.

It is easy to show that this is a genuine equivalence relation, i.e., the
relation is symmetric, reflexive, and transitive. Also just two equivalence
classes of orderings are obtained.

Derinirion. The two equivalence classes of orderings are called the
orientations of Z%. An oriented cell in an open set U is a cell ¢ in U with one
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of the orientations specified. (More precisely, an oriented cell is a set with
two elements: the cell Z% and one of the orientations.) Corresponding to
each cell 77, there are two oriented cells which are denoted by +a7 (or
just z%) and —2z? These are called the positively oriented cell and the
negatively oriented cell or more briefly the positive cell and the negative cell.
If ay, @y, - - -, @, are the vertices of 7% and if aya, - - -a, is an ordering in the
positive orientation, the oriented cell 27 is sometimes denoted by (aga, - - - a,).

Note that the terms “positively oriented” and “‘negatively oriented” are
assigned in an entirely arbitrary way. There is no real reason for calling a
particular orientation the positive one.

If we try to apply the above definition of orientation to a 0-cell (which
congists of just one point), then only one orientation is obtained for the cell.
Consequently it would seem purposeless to introduce an orientation for a
0-cell. However, if a definition of orientation is not made for the 0-cell,
then in any reference to orientation, we would have to treat the 0-cell as a
special case. Consequently we make the following definition.

DEFINTTION.  An oriented 0-cell is a 0-cell with the only possible orientation
specified. This orientation is called the positive orientation.

The geometric notion of a cell and the algebraic notion of ““counting” the
cell a certain number of times are combined in the concept of chain in which
we associate with each one of a finite set of cells a * coefficient,” i.e., a positive
or negative integer, and in this association it is required that “multiplying”
a cell by a negative integer —= is “the same™ as changing the orientation
of the cell and “multiplying” the cell with reversed orientation by +u.
We make this idea precise with the following definition.

DerFINITION. Let C? be the collection of oriented g-cells in U where q is
fixed. A g-chain on U is a function ¢? with domain C? and range a subset of
the integers and with the properties:

(1) ifg > 0,
Y —28) = — %)
for all 2% € C9;
(2) c*(z?) # 0 for at most a finite number of elements ¢ of C9.

(If it is not needed, the superscript ¢ in ¢? will be omitted. Also the
phrase “on U” will often be omitted.)

NotatioN. The chain which has the value +n on an oriented cell 29, the
value —7n on —2%, and is zero elsewhere will be denoted by n2? or if n = 1,
the chain may be simply denoted by z%. In general, the ¢-chain ¢ will be
denoted by >, t'z, where z, is the oriented g¢-cell such that e¢(z;) = ¢! and
Xy, Ly —%y,-++, —I, are the oriented g¢-cells for which the functional
value is nonzero.



6 TOPOLOGICAL TECHNIQUES IN EUCLIDEAN 7-SPACE

DerinrTioN. If ¢y, ¢, are the g-chains 3, t'z,, 3, w/z;, respectively, the
sum of ¢, and ¢y, denoted by ¢, + c¢,, is the g-chain Y, (t* + u*)x; where the
z, are those oriented g-cells such that t* + u* = ¢,(z;) + ¢3(z,) # 0. Ifa
is an integer and ¢ is the g-chain > t'z,, then ac is defined to be the ¢-chain
> at'z,. In particular if a = -1, then ac is denoted by —c. If ¢ is the
g-chain for which all the functional values are zero, then ¢ is called the null
g-chain and is denoted by 6,.

DeriniTioN. If 29 = (aya,- - -a,) is the g-chain which has the value
lonz?and —1 on —2% and is zero elsewhere, the boundary of 27, denoted by
b(x?), is the (g — 1)-chain

bizg) = Z(—l)‘xf“

where 27~ = (a,ay- - -d,- - -a,), i.e., the vertices of 7 with the same ordering
as in z? and with the vertex a, omitted.

To make this definition valid, we must show that it is independent of the
particular ordering aya,- - -a, in the orientation. Suppose aa,- - -a, and
@y, 4y, - - - 4 are orderings in the same orientation so that

(25,04, - - @) = (@gay- - - ap).
If a;, = a,, it is sufficient to show that

(—D)¥apa, - - dy- - ‘ay) = (— 1)"(“1‘,“11 .- ‘.d‘! .. .aq,).

But
(@0 - -ay- - -ag) = (—1)(ayaoay - - -dy- - -ap)
and
(@@, -~ -ay - - -ag) = (— 1)"("1,“10“1, .- 'dt, “ v+ Gy)
or

(—1)¥{aaoa, - - -dy- - -a) = (= 1)s(ayayay, - - -dy,- - -ay).
Since @, = a,,, we have:
(—1)¥(agay - - G- - -a)) = (—1)'(aya, - - by, - - -a).
For examples of the boundary of a chain, see Figure 2.

ReMARK. A definition of boundary for a 0-chain can be introduced but
since we do not need it, we omit it,

DrrintrioN. If ¢ is the ¢-chain 3, t'z, where ¢ 2 1, the boundary of c,
denoted by b(c), is:

ble) = . tb(=,).
i
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ReEMARK. From these definitions, it follows that:
blc, + ¢2) = bley) + bley)
b(—c) = —blc)
b(8,) = By-1.
DerFINITION. The g-chain ¢ is a g-cycle if b(c) = 6,_;.
NotaTioN. A g-cycle will be denoted by 27.
TaeorEM. If ¢ = 2, then b(x%) is a (¢—1)-cycle.
Proor. Let
z? = (aoal' ) 'aq)’
21 = (@g@y- - by - ‘@),
x;!_l = (a,oal. . .dj. . .aq),
x‘{j_z = (aoal. . .d‘. . a‘] . .aq).
Tt is sufficient to show that the value of the chain b[b(x?)] on x{; 2 is zero.
First the chain b(z%) has the value (—1)" on a3 ' for m = ¢, 5. If i <,
then b(zf~!) has value (—1)~* onzf;”? and b(z§~ 1) has value (—1)! on a§; 2.
Thus if 7 < j, the value of b[b(x%)] on xf~ 2 is:
[(—D{—1Y + (-1¥(=1)] = 0. |
DerintrioN. Let U, V be open sets in B*. The g-cycle 22 on U is a
bounding cycle in V if there is a (¢ + 1)-chain ¢? +1 on V such that:
b(c?*l) = 28
(2.1) TrEoREM. If 2% is a cycle on U, an open set in R, and if g = 1
then 22 is a bounding cycle in B™.

Proor. Letz? = >N, t‘z;‘ . Let a be a point in R" which is not a vertex
of any of the cells 2%, -+, 2%. If zf = (@00, -a,), let (ax?) denote the
oriented cell (agqa; - - - ay) and let az® denote the chain

Z ti(ax?).
i=1

In particular, if 2% = 6,, then az? denotes 6, ;.
If b(af) is S7_, (—1)297%, let ab(xf) denote the chain Stoo (—1Y(axi~?).
Then
m
bl(az0)] = 2, t'b(axf)

i=1

= Z tiaf — ablad)]

If
Ms I

t'zf — ab(z?)

-
[
-

t"';zq-l

il
Ms

-
1
-
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a,
a; < ;
ay
()  blas@iaz) = (3031} — (@08a) + (2165)-
Zy %
Go a,
(it) bl{003182) + (3:18382)] = (Go@1) — (GoBa) + (3183) — (@1a3) + (@185) + (Gaa3)

= (a081) — (o83) + (@19a) + (a3a4).
Note that (a,a;) appears in the boundary of each of the 2-cells and ‘“‘cancels out.”

- (i) - b[(“ocz’fo) + (Bocshy) + (B1e182) + (bygacy) + (bacaba) + (bacia:) + (B2a:c0)
+ (bacobo) + (bocosio)]

= (aoC2) + (c282) + (aac1) + (c134) + (3160) + (Cag0)
— (Bob1) — (b1bz) — (baby).

Thus if U is the open set bounded by circles R, and R, then

(a0ta) + (ca®s) +(a3cs) + (€181) + (81¢0) + {coa0) ~ [(bobs) + (bibg) + {babo)]
in U. But neither of these 1-chains is homologous to ¢, in U,

Ficure 2. SOME BOUNDARIES

DEerInITION. Suppose 2§, 2§ are cycles in U. Then 27 is homologous in U
to 2§ if there exists a chain ¢+ in U such that

b(cs*!) = 2§ — 2.
In particular if there exists ¢?+! such that
b(cq+1) = 24,

then 2? js homologous to 6, We write 2{ ~ 2§ in U to indicate that 2{ is
homologous in U to 24.



