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Preface

This book aims to give a clear explanation of classical theory of analytic
functions; that is, the theory of holomorphic functions of one complex
variable. In modern treatments of function theory it is customary to call a
function holomorphic if its derivative exists. However, we return to the old
definition, calling a function holomorphic if its derivative exists and is
continuous, since we believe this is a more natural approach.

The first difficulty one encounters in writing an introduction to function
theory is the topology involved in Cauchy’s Theorem and Cauchy’s integral
formula. In the first chapter of the book we prove the latter in a
topologically simple case, and from that result we deduce the basic proper-
ties of holomorphic functions. In the second chapter we prove the general
version of Cauchy’s Theorem and integral formula. I have tried to replace
the necessary topological considerations with elementary geometric con-
siderations. This way turned out to be longer than I expected, so that in the
original Japanese three-volume edition I had to end Volume 2 before
Chapter 5 was completed. My original intention was to present classical
many-valued analytic functions, in particular the Riemann surface of an
algebraic function, and to introduce the general concept of a Riemann
surface as its generalization. Now, with the appearance of the complete
Japanese edition in a single volume, the link between the theory of
Riemann surfaces and function theory is restored.

Similarly, for the theory of Riemann surfaces, with the assumption that
the topology of curved surfaces is known, the plan was to introduce the
content of Weyl’s book: The Concept of Riemann Surfaces. Part II: Func-
tions on Riemann Surfaces, but that would have been counter to the
original policy of replacing the topological approach with elementary
geometrical considerations. Thus, in Chapter 7, I have tried to illuminate
topological characteristics of compact Riemann surfaces by using Rie-
mann’s mapping theorem. Consequently, Chapter 7 became longer than
was planned, so Chapter 8 is limited to covering the Riemann—Roch
theorem and Abel’s theorem, which are the most basic theorems regarding
analytic functions on compact Riemann surfaces.
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1

Holomorphic functions

1.1 Holomorphic functions

a. The complex plane

An expression z = x + iy, where x and y are real numbers and
= \/ —1, is called a complex number. The sum, difference, and product of
two complex numbers z = x +iy and w = u + iv are defined by

z+w=(x+u)+i(y+v),

z—w=(x—u)+i(y—v),

zw = (xu— yv) +i(xv + yu)

These expressions are obtained by first evaluating z +w, z—w, and zw as
polynomials in the “variable” i and then replacing i> by — 1. Therefore,
addition, subtraction, and multiplication as defined above satisfy the
associative, commutative, and distributive laws.

As usual, the real number line is represented by R. The plane R? is the
product R x R, that is, the collection of all pairs (x, y) of real numbers. If
one identifies the point (x, y) of the plane R? with the complex number
z = x +iy, then R? is called the complex plane. The complex plane is rep-
resented by C.

The absolute value |z| of the complex number z = x + iy is defined by

|z = /x+)?

For two complex numbers z = x+iyand w = u+iv

|z—w| =/(x—u?+ (y—0)?
is the distance between the points z and w in the plane C. In particular, |z| is
the distance between the point z and the origin 0.

If one represents the complex number z = x + iy by the vector 0z from 0
to z, then (x, y) are the coordinates of zand |z| = /(x? + y?)is the length of
0z. Therefore, if z, and z, are complex numbers, and w = z, + z, is their
sum, then the vector Ow is equal to the sum of 0z, and 0z, (Fig. 1.1):

ow = 011 +012.




2 Holomorphic functions
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Fig. 1.1

For any complex number z = x + iy, one calls x — iy the conjugate of z.
The conjugate of z is represented by Z:

zZ=Xx—1iy.

imaginary axis
ez=x+1y

real axis
°Z=zx—1iy

Fig. 1.2

Furthermore, x is called the real part of z = x + iy, and y is called the
imaginary part. The real part of z is represented by Re z, the imaginary part
by Im z:

Rez=x=22ﬂ, Imz=y='(z_z)

The line R x {0} in the complex plane is called the real axis and the line {0}
x R is called the imaginary axis. The conjugate 7 of z and z are represented
by points in the complex plane, that are symmetric with regard to the real
axis. Obviously
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1.1 Holomorphic functions 3.

Moreover
zP =|Z)?=x2+y*=z-3
Hence
lzw|? = zwzw = 2wiw = zZww = |z)?|w|?,
and therefore
lzw| = |z] |w|. (1.1)
If z# 0, then |z| > 0and z - 7/|z|* = 1. So if 2 # 0, then z has an inverse

1/z = z/|z|?. Therefore, the collection of all complex numbers C is a field,
called the field of complex numbers.

For z # 0 we have (m)z' = (Wz_)z = w, therefore

(W/2) = W/z.

Since similar rules hold for addition, subtraction, and multiplication, as
we saw above, it is now clear that if a complex number w is arrived at by a
finite number of additions, subtractions, multiplications, and divisions
applied to a finite number of complex numbers zy, 23, ...,2,, then by
applying the same operations in the same order to Z,,2,, ...,2, 0nearrives
at w. Therefore, the correspondence from C into C given by z— 7 is an
isomorphism.

For two arbitrary complex numbers, we have the following inequality

lz+w| < |z|+|wl. ' (1.2)

Proof: Using Re z < |z| we have
24+ W|? = (Z4+W)(E+W) = 22+ 2w + W3 + W
= |z|* 4+ 2 Re(zw) +|w|? < 12|+ 2|zw| + |w|?
= |z +2Iz| W]+ |w|? = (|z] + |w])%

From the inequality (1.2) the triangle inequality
|2y — 23] £ |2, =2z +|z; —z;],
where z,, z,, z, are arbitrary points of the complex plane, follows at once.
From |z| £ |z—w| + |w|, we conclude lz]=|w| < |z—w|.
In the same way it is proved that |w|— |z] < |w—z|. Hence

Izl =Iwll < |z—w|. (1.3)
Repeated application of (1.1) and (1.2) yields
1212525 - - - 2,| = [z4] |22] |25] - - - 2,1,

|z 4224 - +z S hzi|+za]+ -+ 4]z,
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Therefore
lao+a,z+a,22+ - - - +a,z"| < |ao| +|ay| Iz| +lay| |z|?
7o e fagh j2

Since the complex plane C can be identified with the real plane R?,
definitions and theorems pertaining to subsets of R? also apply to sub-
sets of C. For example, one says that the sequence {z,} of complex
numbers converges to w, if the sequence {z,} of points converges to the
point w, that is, if

lim |z,—w|=0.

n— o

Theorem 1.1 (Cauchy’s criterion). The complex sequence {z,} converges
if and only if for every real number ¢ > 0, there exists a natural number
nq(€) such that

|2, — 2z | < & if n> ny(e) and m > ny(e).

We have ||z,| — |w|| < |z, —w| by (1.3), therefore from lim, ., z, = wwe
can conclude lim,. |z,| = |w|. Hence if the complex sequence {z,}
converges, then the sequence {Iz,,l} converges too and we have

lim |z,| = |lim z,).
n— o n—o
The infinite series ) °_ z, =2z, +z,+ --- +2z,+ -- - is said to con-

verge if the complex sequence {w,} of partial sums
w,,=z,+22+ N

converges. The complex number w = lim, _, ., w, is called the sum of the
series and we write

@
W= Z z"=zl+zz+... +zn+.

n=1

If the sequence {w, } does not converge, then the series Yoo, Zniscalled
divergent.

Putting 6, = |z,|+|z,|+ - - - +|z,|, we have for m < n
n
'W"'-W,,,l: 2 2k é Z IZ)‘|=0',,—'0',,|-
k=m+1 k=m+1

Applying Cauchy’s criterion we conclude that Z:":l z, converges if
Yo, |za] converges. In this case, Yuy Zaiscalled absolutely convergent.
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If ) _, z, is absolutely convergent, then
- o]
2 Zn
n=1
Since ) 7, |z,| either converges or diverges to +oo, Y z, is
absolutely convergent if and only if )’ *_, |z,|< + 0. Ifw=3Y"__ 2 and
w=7Y"%_ {, are both absolutely convergent, then
wew=2z{;+2,{; +2,{,+23(,
+230+ 238 + 2,0+ 2y {3+ - - - (1.4)

= lim |w,| < lim Y |z,]= ) |zl

m— oo m—>o p=1 n=1

lim w,

m =

Proof: Putting
Op = |Za] 11|+ 1201 | 1C2 1+ 1202 | 1S3 1+ - - - +zy | [Ea]

we have 3" 6, = Y%  |2,I X, I¢,), s0 that the series of the right-
hand side of (1.4) is absolutely convergent and

T e S et
n=1 =1 n=1

S A o 175 e N SR
=1 n n=1

n =1

b. Functions of a complex variable

Let D be a subset of C, i.e., D is a point-set in the complex plane. A
function f defined in D assigns to each element of D exactly one complex
number. D is called the domain of f. For { € D the complex number w
assigned to { by f is called the value of f at {. We write

w = f().

If S is a subset of D, then the collection of all complex numbers f({),

where { € S, is written as f(S)
S8 ={f():{eS}.

The set f(D) of all values w = f({) is called the range of f.

Writing f(z) instead of f, one calls z a variable and f(z) a function of a
complex variable. Just as for functions of a real variable, z denotes an
arbitrary element { of D, or, in other words, a symbol for which { has to be
substituted. According to general custom, we will use the same letter z to
denote points of D. Putting w = f(z), we call w a function of z.

An open subset U of the complex plane is said to be connected if U is not
the union of two nonempty, open subsets that have no points in common.
An open subset U is connected if and only if each pair of points z, w of U can
be connected by an arc lying in U.
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A connected open subset of C is called a region (or a domain); the closure
of a region is called a closed region (or a closed domain).

In this book we will mainly consider functions defined on regions or on
closed regions, but we start by discussing limits, continuity, and other
properties of functions, defined on arbitrary sets D < C.

Definition 1.1. Let D bea point setin C,can accumulation point of D, and
7 a complex number. We say that f(z) converges to y or that y is the limit of
f(z)as ztendsto ¢, if for every real e > O there exists a real 5(c) > 0 satisfying

If()—yl<e if0<|z—c|<d(). (1.5)

This is written as

limf(z) =y

zZ=c

or
f@@—>y asz-ec.

Since f(z) is not defined if z ¢ D, we have to assume that ze D in ( 1.5). The
assumption that c is an accumulation point of D is necessary to exclude the
possibility that there are no points z satisfying ze Dand O < |z — c| < d(e).

The proof of the following result is similar to the proof of the
corresponding result for real functions.

The function f(z) converges to y as z tends to c if and only if for all
complex sequences {z,},z,€D and z,+# c, converging to ¢ the complex
sequence {f(z,)} converges to y.

Combining this theorem with Cauchy’s criterion for complex sequences,
we arrive at Cauchy’s criterion for functions.

Theorem 1.2 (Cauchy’s criterion). Let f(z) be a function of the complex
variable z defined on D < C and let ¢ be an accumulation point of D. Then
S (z) converges to some value if z tends to c if and only if for everyreale > 0
there exists a real d(¢) > 0 such that

If@—fW)l<e if 0<|z—c|<d(e)and0<|w—c| < d).

Let f(z) be a complex function defined on D = C, and assume that ¢
belongs to D. If

lim f(2) = f(c), (1.6)

zZ=c

then f(2) is said to be continuous at c.
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It follows at once from the definition that f(z) is continuous at c if and
only if for every real ¢ > 0O there exists a real d(¢) > 0 such that

If@—-Sf)l <& if |z—c|<d(e)

(If ¢ is an isolated point of D, then for sufficiently small é the only z
satisfying zeD and. |z—c| < é(¢) is ¢, in which case f(z) is certainly
continuous at c.)

Putting z = x+iy and ¢ = a+ ib, we can split f(z) into a real and an
imaginary part

J(@) = u(@)+iv(z), u(z)=Ref(z), »(z)=1Imf(2).

The real part and the imaginary part can be considered as real functions of
two real variables x and y where z = x +iy. From

I/ @ =1 ()l = /1u(x, y)— u(a, b)|* + |v(x, y) —v(a, b)|?

we conclude that (1.6) is equivalent to

lim  u(x, y) = u(a, b), lim  v(x, y) = v(a, b).
(x, y)—*(a, b) (x, y) = (a, b)
Therefore, the function f(z) = u(x, y)+iv(x, y) of the complex variable
z = x +iyiscontinuous at ¢ = a + ib if and only if its real part u(x, y)and its
imaginary part v(x, y) are continuous at (a, b) as functions of the two real
variables x and y.

If the complex function f(z) is continuous at all points of its domain
D < C, then fis called a continuous function of z or simply a continuous
Sfunction. The function f(z) = u(x, y)+iv(x, y) of the complex variable

= x + iy is continuous if and only if its real part u(x, y) and its imaginary
part v(x, y) are continuous functions of the two real variables x and y.

Just as for functions of a real variable, limits of complex functions satisfy
the following rules: let f(z) and g(z) be functions of a complex variable z
defined on D < C and let ¢ be an accumulation point of D. If both f(z) and
g(z) converge to a limit as z — ¢ then the linear combination a, f(z) + a, f(2),
where a, and a, are constants and the product f(z) - g(z) converge to a limit
and these limits satisfy

lim (a,f(2) + a,9(2)) = a, lim f(2) + a, lim g(2),

“l“tf (2)g(2) = ii_r.ncf (@) 'ligl 9(2).

If moreover lim,.. g(z) # 0, then the quotient f(z)/g(z) converges
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if z - ¢ and the limit satisfies

i f@z) li_rnf(z)
im——=22¢
e 9(2) lim g(z)

z-c

Hence if f(z) and g(z) are continuous functions of z, then the linear
combination a,f(z)+a,g(z) and the product f (z)g9(z) are continuous
functions. If, moreover, g(z) # O for all ze D, then the quotient f(2)/g(z) is
also a continuous function of z.

Continuity of the composite of two complex functions obeys the same
rule as real functions do: If f(z) is a continuous function of z defined on
D < C, if g(w) is a continuous function of w defined on E = C and if
J (D) < E, then the composite g(f(z)) is a continuous function of z on D. F or,
if ¢ is an arbitrary point of D, then lim :=cf(2)=f(c)and lim 7 9w)
= g(f(c)); hence lim , _, . g(f(2)) = g(f(c)).

The functions z and 7 are obviously continuous functions of z defined on
C. According to the above, linear combinations of finite products of zand z,
that is polynomials in z and #

m n
@)= Z Z Ay 292, a,,€C
h=0k=0
are continuous functions of z.

Definition 1.2. Let f(z) be a continuous function of z defined on D < C. If
for every real ¢ > 0 there exists a real o(g) > 0 such that

lf@)—fw)| <e if |z—w| < é(¢) and zeD and weD
then f(z) is said to be uniformly continuous on D.

Theorem 1.3. A continuous function f(z) defined on a bounded, closed set
D < C is uniformly continuous on D.

Proof: Assume that f(z) is not uniformly continuous on D. Then there
exists an ¢ > 0, such that for each ¢ it is not true that If(@)—f(w)| > ¢
whenever |z —w| < 8, ze D, and we D. Hence there exist complex numbers
z, and w, for each natural number n, satisfying

fa=wal <. zeD,  weD,  lf)—fon)lze (L)

Since D is bounded, there exists a subsequence Znys Znys - o5 Znp e a My
<n;<:--<n;<---,of the complex sequence {z,}, which converges.



