

FDITFD BY CARL FAINGOLD AND HAL BLUMENFELD

Neuronal Networks in Brain Function, CNS Disorders, and Therapeutics

NEURONAL NETWORKS IN BRAIN FUNCTION, CNS DISORDERS, AND THERAPEUTICS

Edited by

CARL L. FAINGOLD

Southern Illinois University School of Medicine, Springfield, IL, USA

HAL BLUMENFELD
Yale University School of Medicine
New Haven, CT, LAA

Academic Press is an imprint of Elsevier 32 Jamestown Road, London NW1 7BY, UK 225 Wyman Street, Waltham, MA 02451, USA 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA

Copyright © 2014 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: permissions@elsevier.com. Alternatively, visit the Science and Technology Books website at www.elsevierdirect.com/rights for further information

Notice

No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

ISBN: 978-0-12-415804-7

For information on all Academic Press publications visit our website at elsevierdirect.com

Typeset by TNQ Books and Journals Pvt. Ltd. www.tnq.co.in

Printed and bound by CPI Group (UK) Ltd, Croydon, CR0 4YY 14 15 16 17 18 10 9 8 7 6 5 4 3 2 1

www.elsevier.com • www.bookaid.org

NEURONAL NETWORKS IN BRAIN FUNCTION, CNS DISORDERS, AND THERAPEUTICS

Dedications

I would like to express my profound appreciation and love to my wife, Carol Faingold, for her caring and unwavering support throughout my career, and especially during this project, which has been an impossible dream and a true exercise in tilting at windmills of the mind. The graduate students, post doctoral fellows, and colleagues who participated in the research from my laboratory deserve much of the credit for our work, but we all ultimately recognize that nature is the true professor and we are all but students. I want to thank the National Institutes of Health (NINDS and NIAAA), Citizens United for Research in Epilepsy, and Epilepsy Foundation for funding our research, and the Southern Illinois University School of Medicine for providing the scientific home, where all our research was carried out. This project would not have been completed without the assistance of my current and former secretaries, Gayle Stauffer and Diana Smith, who labored with me and our coeditor as well as all the authors to make this book a reality. I would also like to thank my family, my sons Scott, Rob, and Chuck; my daughter-in-law Trisha; and my grandkids, Noah, Samantha, Ryan, and Manny for their support. I would also like to thank my late parents, Charles and Anne Faingold, for starting me on the path of my three score and ten year journey to *tikkun olam*. As a life-long sufferer from a neurological disorder, I can only hope that application of the ideas expressed in this book can help advance the treatment of serious brain disorders that plague so many other patients.

Carl L. Faingold, PhD

I would like to dedicate this book to my family—the wonderful love of my life Michelle, our children Eva, Jesse, and Lev who keep a smile on my face, my parents who continue to make me proud, sister who is always there for me, loving in-laws, and all the other family members sharing our journey through life.

Hal Blumenfeld, MD, PhD

List of Contributors

- L.F. Agnati Fondazione IRCCS San Camillo, Venezia Lido, Venice, Italy
- Carol A. Bauer Division of Otolaryngology, Head and Neck Surgery, Southern Illinois University School of Medicine, Springfield, IL, USA
- **Tara G. Bautista** The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
- Hal Blumenfeld Department of Neurology, Yale University School of Medicine, New Haven, CT, USA; Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA; Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA
- Anna Boccaccio Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
- Angelique Bordey Departments of Neurosurgery and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
- **Thomas J. Brozoski** Division of Otolaryngology, Head and Neck Surgery, Southern Illinois University School of Medicine, Springfield, IL, USA
- Peter L. Carlen Department of Surgery, Division of Neurosurgery, Toronto, Ontario, Canada; Division of Fundamental Neurobiology, Toronto Western Hospital Research Institute, Toronto Western Hospital, Ontario, Canada; Krembil Neuroscience Center, University Health Network, Toronto, Ontario, Canada
- Marcello D'Ascenzo Institute of Human Physiology, Medical School, Università Cattolica, Rome, Italy
- Alain Destexhe Unité de Neurosciences, Information et Complexité (UNIC), Centre National de la Recherche Scientifique (CNRS), France
- Marshall Devor Department of Cell and Developmental Biology, Silberman Institute of Life Sciences and the Center for Research on Pain, The Hebrew University of Jerusalem, Jerusalem, Israel
- **F. Edward Dudek** Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
- Jonas Dyhrfjeld-Johnsen Sensorion, Montpellier, France
- Carl L. Faingold Departments of Pharmacology and Neurology, Division of Neurosurgery, Southern Illinois University School of Medicine, Springfield, IL, USA
- Tommaso Fellin Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
- **Hua-Jun Feng** Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA

- Craig F. Ferris Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
- Patrice Fort INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, Team "Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil", Lyon, France and University Lyon 1, Lyon, France
- **Moran Furman** Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- K. Fuxe Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Aristea S. Galanopoulou Saul R. Korey Department of Neurology, Dominick P. Purpura Department of Neuroscience and Comprehensive Einstein/Montefiore Epilepsy Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Norberto Garcia-Cairasco Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo Ribeirão Preto, São Paulo, Brazil
- S. Genedani Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
- D. Guidolin Department of Molecular Medicine, University of Padova, Padova, Italy
- Jennifer N. Guo Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Alexander G. Gusev Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA; Institute of Neuroscience, University of Oregon, Eugene, OR, USA
- Michael M. Halassa Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Hamada Hamid Departments of Psychiatry and Neurology, Yale University, New Haven, CT, USA; Connecticut Veterans Administration Health Care System, West Haven, CT, USA; Yale Concussion Center, New Haven, CT, USA; Connecticut Veterans Administration Epilepsy Center of Excellence, West Haven, CT, USA
- **Bahman Jabbari** Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- **Larry M. Jordan** Department of Physiology, Spinal Cord Research Centre, University of Manitoba, Winnipeg, MB, Canada
- Stacey L. Krager Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, USA
- Amanda-Amrita D. Lakraj Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- **Tiffany V. Lin** Departments of Neurosurgery and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA

- Pierre-Hervé Luppi INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, Team "Physiopathologie des réseaux neuronaux responsables du cycle veillesommeil", Lyon, France and University Lyon 1, Lyon, France
- **Duarte G. Machado** Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Kendall F. Morris Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, FL, USA
- Solomon L. Moshé Saul R. Korey Department of Neurology, Dominick P. Purpura Department of Neuroscience and Comprehensive Einstein/Montefiore Epilepsy Center, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Joshua Motelow Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- **Prosper N'Gouemo** Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA
- Paul M. Pilowsky Macquarie University, Sydney, NSW, Australia
- **Teresa E. Pitts** Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
- Manish Raisinghani P2ALS Foundation, Columbia University Medical Center, New York, NY, USA
- Awais Riaz Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
- **Evgeny A. Sametsky** Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
- Glenn E. Schafe Department of Psychology and Center for Study of Gene Structure and Function, Hunter College, The City University of New York, New York, NY, USA

- Urszula Sławińska Department of Neurophysiology, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
- P.F. Spano Fondazione IRCCS San Camillo, Venezia Lido, Venice, Italy; Department of Biomedical Sciences and Biotechnology, University of Brescia, Brescia, Italy
- **Kevin Staley** Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- James D. Stittsworth, Jr. Florida State College at Jacksonville, Kent Campus, Jacksonville, FL, USA
- Inna Sukhotinsky Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
- Waldemar Swiercz Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Jeffrey Tenney Department of Pediatrics, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Shelley A. Tischkau Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
- Srinivasan Tupal Department of Anatomy and Neurobiology, Washington University, St. Louis, MO, USA
- Victor V. Uteshev Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA; Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
- Taufik A. Valiante Department of Surgery, Division of Neurosurgery, Toronto, Ontario, Canada; Division of Fundamental Neurobiology, Toronto Western Hospital Research Institute, Toronto Western Hospital, Ontario, Canada; Krembil Neuroscience Center, University Health Network, Toronto, Ontario, Canada

Contents

List of Contributors xiii

1. Introduction to Neuronal Networks of the Brain Carl L. Faingold, Hal Blumenfeld

Introduction 1
"Silos" in CNS Network Research 1
Types of Network Interactions 1
Epilepsy as a Template for Network Studies 2
Network Technical Approaches 3
Computational Approaches to Neuronal Networks 3
Network Exploration Process: An Overview 4
Neuronal Network versus Neuroanatomy 4
Emergent Properties of Neuronal Networks 5
Mechanisms Responsible for Network Control 5
Neuroplasticity 6
Emergent Properties of Networks as Therapeutic Targets 7
References 9

2. Network Models of Absence Seizures ALAIN DESTEXHE

Introduction 11
Experimental Characterization of Generalized Spike-and-Wave Seizures 11
Network Models of Spike-and-Wave Seizures 14
Testing the Predictions of the Models 28
Conclusions: A Corticothalamic Mechanism for Absence Seizures 30
References 32
Further Reading 35

3. Functional Magnetic Resonance Imaging in Epilepsy: Methods and Applications Using Awake Animals CRAIG F. FERRIS, IEFFREY TENNEY

Introduction 37
Setting Up and Imaging Awake Animals 38
Spatial Resolution and Neuroanatomical Fidelity 41
Data Analysis 44
Awake Seizure Studies 47
Summary 53
References 53

4. Network Experimental Approaches: Inactivation, Microinjection, Neuronal Stimulation, and Recording HUA-JUN FENG, CARL L. FAINGOLD

Introduction 55 Inactivation Techniques 55 Neuronal Stimulation 58 Neuronal Recording 60 Conclusions 63 References 64

5. Network Experimental Approaches: Ex Vivo Recording VICTOR V. UTESHEV

Introduction 67
Direct Synchronization via Chemical and Electrical Synapses in the Olfactory Bulb 67
Inhibition of Asynchrony in Spontaneous Activity of Hypothalamic Histaminergic TM Neurons 69
Stochastic Enhancement of Neuronal Excitability:

Can a Single Ion Channel Excite the Entire Neuron? 71
Conclusion 73

References 73

6. Network Imaging JENNIFER N. GUO, HAL BLUMENFELD

Introduction 77
The Relationship between Anatomical and Functional
Connectivity 78
Network Properties and Measures 78
The Neuroenergetic Basis for Small-World Network Functions 80
Methods for Extracting Network Activity 80
Electrophysiological Activity is Related to Resting
Functional Connectivity 81
Oscillatory Networks Can Be Measured by EEG and MEG 82
Networks in Cognition and Consciousness 84
Network Disruptions in Disease 85
Conclusion 86
References 86

7. Network Control Mechanisms: Cellular Inputs, Neuroactive Substances, and Synaptic Changes CARL L. FAINGOLD

Introduction 91
Projection Neuron Inputs 92
Multiple Inputs 93
Electrophysiological Mechanisms 94
Neuroactive Substances 94
Cytokine Involvement in Network Control 97
Synaptic Strength Changes, Synaptogenesis, and Neurogenesis 97
Neurotropic Factors 98
Axonal Sprouting 98
Neurogenesis 99
Conclusions 99
References 99

viii CONTENTS

8. Volume Transmission and the Russian-Doll Organization of Brain Cell Networks: Aspects of Their Integrative Actions

L.F. AGNATI, S. GENEDANI, P.F. SPANO, D. GUIDOLIN, K. FUXE

General Premises 103
Introduction 103
On the Structural Organization of the CNS 104
The Dichotomy Distinction between Wiring and Volume Transmission 107
Concluding Remarks 113
General Conclusion 114
References 114

9. Electrophysiological Mechanisms of Network Control: Bursting in the Brain—From Cells to Networks TAUFIK A. VALIANTE, PETER L. CARLEN

Introduction 121
Mechanisms Underlying the Single-Unit and Local
Field Potential—Measured Bursts 123
Neuronal Bursting: Seizures 126
Conclusion 130
References 131

10. Network Control Mechanisms—Cellular Milieu VICTOR V. UTESHEV, ALEXANDER G. GUSEV, EVGENY A. SAMETSKY

Introduction 135

Effects of the Extracellular Ionic Composition on Neuronal Network Activity 136

Effects of Oxygen on Neuronal Activity 137

Effects of Osmolarity on Neuronal Activity 137

Effects of pH on Neuronal Activity 138

Effects of Temperature on Neuronal Activity 138

Effects of Glial Cells on Neuronal Activity 139

Extracellular Ions and Ex vivo Models of Seizure 139

Evaluation of Distance and Time Dependence of Drug Diffusion in the Extracellular Space 141

Conclusion 141

References 141

11. Neuronal Network Mechanisms—Sex and Development

ARISTEA S. GALANOPOULOU, SOLOMON L. MOSHÉ

Introduction 145
Basal Ganglia 145
Corticothalamic Network 152
Conclusions 152
References 153

12. Astrocytic Regulation of Synapses, Neuronal Networks, and Behavior

MICHAEL M. HALASSA, MARCELLO D'ASCENZO, ANNA BOCCACCIO, TOMMASO FELLIN

Introduction 157 Astrocytic-Neuronal Structural Association 157 Gliotransmission: The Release of Chemical Transmitters by Astrocytes 158

Complexity of Astrocyte-to-Neuron Communication 158

Vesicular ATP Release from Astrocytes and
Its Functional Consequences on Neuronal Function 159

Gliotransmission Modulates Network Activity
and Cortical Rhythms In vivo 160

Astrocytes Regulate Sleep-Related Behaviors 161

Astrocytic Neuromodulation Contributes to Feedback
Control of Breathing 162

Concluding Remarks 163

References 163

13. The Fear Memory Network GLENN E. SCHAFE

An Overview of Pavlovian Fear Conditioning 167
The Amygdala and Fear Conditioning 167
Synaptic Plasticity in the Amygdala and Fear
Conditioning 169
Distributed versus Local Plasticity in the Amygdala 169
Plasticity beyond the Amygdala 170
Contextual Fear Conditioning 170
Turning Fear Off: Fear Extinction 171
Fear Learning in Humans and Its Relevance to Anxiety
Disorders 172
Conclusions 173
References 173

14. Orchestration of the Circadian Clock Network by the Suprachiasmatic Nucleus SHELLEY A. TISCHKAU, STACEY L. KRAGER

Introduction 179
The Cellular Basis of Circadian Rhythmicity 180
SCN as the Master Clock 181
Input to the SCN 183
Gating of the SCN 185
SCN Output 185
SCN Control of Locomotor Activity 186
SCN Control of the Adrenal Gland 187
SCN Control of the Female Reproductive Cycle 187
SCN Control of the Pineal Gland 188
SCN Control of Metabolism 188
Circadian Rhythms in Health and Disease 188
Conclusions 189
References 189

mTOR Signaling in Cortical Network Development

TIFFANY V. LIN, ANGELIQUE BORDEY

Introduction 193
Background 193
Methods: In utero Electroporation 197
Current Research 199
Unanswered Questions and Future Research 201
Conclusion 202
References 202

CONTENTS

16. Network Control Mechanisms—Synaptogenesis and Epilepsy Development

KEVIN STALEY, JONAS DYHRFJELD-JOHNSEN, WALDEMAR SWIERCZ, F. EDWARD DUDEK

References 212

17. The Brain and Spinal Cord Networks Controlling Locomotion

LARRY M. JORDAN, URSZULA SŁAWIŃSKA

Descending Control of Locomotion 215

The Locomotor Areas of the Brain for Selection
of Locomotion 218

CPG Interneurons 221

Interneurons Identified on the Basis of Progenitor Domain 222

Sensory Control of Locomotion 225

Clinical Applications 226

Concluding Remarks 227

References 227

18. The Brainstem Respiratory Network

TARA G. BAUTISTA, TERESA E. PITTS, PAUL M. PILOWSKY, KENDALL F. MORRIS

Functions of the Brainstem Respiratory Network 235
Anatomy of the Respiratory System 235
Dorsal Respiratory Group 236
Ventral Respiratory Column 236
Interactions with Other Networks and Reconfiguration for Airway Protection 239
Summary 240
References 240

19. Visual Network MORAN FURMAN

Introduction 247
Retinal Circuits for Initial Visual Processing 247
Subcortical Visual Pathways 249
The Colliculo-Pulvinar-Cortical Pathway 250
The Primary Visual Cortex 250
Ventral and Dorsal Cortical Pathways for Visual Processing 252
The Neural Basis of Conscious Visual Experience 252
Loss of Visual Awareness following Localized Lesions in the Vision Network 253
Neural Correlates of Perceived Stimulus Properties 253
Conceptual Model: Brain Networks for Visual Awareness 256
References 256

20. Auditory Neuronal Networks and Chronic Tinnitus

THOMAS J. BROZOSKI, CAROL A. BAUER

Tinnitus Phenomenology and Epidemiology 261
Processing Acoustic Information: The Auditory Pathway 26
De-afferentation and Homeostatic Compensation 263

Animal Models 265
Compensation and Overcompensation in the Brainstem 266
Loss of Inhibition 269
Auditory Cortex and Amygdala 270
Nonauditory Brain Areas 270
A Cellular Component of Tinnitus 272
Conclusions 272
References 272

21. Consciousness and Subcortical Arousal Systems

JOSHUA MOTELOW, HAL BLUMENFELD

Introduction 277
Acetylcholine 278
Norepinephrine 282
Histamine 283
Serotonin 284
Orexin 285
Glutamate 286
Dopamine 287
Conclusions 287
List of Abbreviations 288
References 289

22. Networks of Normal and Disordered Sleep PIERRE-HERVÉ LUPPI, PATRICE FORT

Introduction 299 Mechanisms Involved in Waking (Figure 22.1) 299 Mechanisms Involved in NREM (SWS) Induction and Maintenance (Figure 22.2) 300 Mechanisms Controlling the Activity of NREM (SWS) Sleep-Inducing Neurons 302 Overview of the Neuronal Network Responsible for SWS (NREM) Sleep (Figure 22.2) 302 Mechanisms Involved in Paradoxical (REM) Sleep Genesis (Figure 22.3) 302 Paradoxical (REM) Sleep-Generating Neurons: The Switch from Acetylcholine to Glutamate Mechanisms Responsible for SLD PS-on Neuron Activation during PS 304 Neurons Inhibiting the GABAergic and Monoaminergic PS-off Neurons at the Onset of and during PS Role of the MCH and GABAergic Neurons of the Lateral Hypothalamic Area in PS Control 305 Conclusion 306 References

23. Networks for the Modulation of Acute and Chronic Pain INNA SUKHOTINSKY, MARSHALL DEVOR

Introduction 311
Pain-Processing Pathways 311
Processing Changes in Chronic Pain 314
The Mesopontine Tegmental Anesthesia Area (MPTA) 316
Discovery of the MPTA 317

X CONTENTS

 MPTA Connectivity: Interrelationship with the Pain Control Network 318
 Network Interactions and Therapeutic Implications 320
 Summary 321
 References 321

24. Networks in Mood and Anxiety Disorders HAMADA HAMID

Amygdala 327 Hippocampus 329 Prefrontal Cortex 330 Basal Ganglia 330 Conclusion 332 References 332

25. Neuronal Networks and Therapeutics in Neurodegenerative Disorders

AMANDA-AMRITA D. LAKRAJ, BAHMAN JABBARI, DUARTE G. MACHADO

Introduction 335
Basal Ganglia 335
Parkinson's Disease 337
Essential Tremor 339
Primary Torsion Dystonia 340
Tourette's Syndrome 340
Huntington's Disease 342
Alzheimer's Disease 344
Conclusion 345
References 345

26. Neuronal Networks in Epilepsy: Comparative Audiogenic Seizure Networks

CARL L. FAINGOLD, MANISH RAISINGHANI, PROSPER N'GOUEMO

Introduction 349 Developmental Epilepsy Networks 350 Networks for Absence Epilepsy Models 350 Networks for Epilepsy Kindling Models 350 Status Epilepticus Networks 350 Networks for Generalized Human Epilepsy 351 Forms of AGS 352 Genetic Forms of AGS Susceptibility 352 Induced Forms of AGS 352 Thyroid-Deficient Form of AGS Susceptibility 353 Ischemia-Induced Form of AGS Susceptibility 353 Alcohol Withdrawal (ETX)-Induced AGS Susceptibility 353 AGS Severity 353 Neuronal Networks in AGS 354 AGS Neuronal Network Studies 355 Blockade Studies of the IC in Induced AGS Models 356 Blockade of the IC in the Ischemia Model 356 The DLSC in AGS Networks 360 Role of the PAG in AGS Networks 361 The PRF in AGS Networks 362 Role of the Substantia Nigra Reticulata in AGS Networks 362 Forebrain Structures in AGS 363

Hierarchical Organization of the AGS Network 364

Conclusions 365 References 366

27. Physiological and Pathophysiological Expansion of Neuronal Networks

PROSPER N'GOUEMO, NORBERTO GARCIA-CAIRASCO, CARL L. FAINGOLD

Neuronal Network Expansion Mechanisms 375 Conclusions 382 References 383

28. Neuronal Network Plasticity and Network Interactions are Critically Dependent on Conditional Multireceptive (CMR) Brain Regions

CARL L. FAINGOLD, AWAIS RIAZ, JAMES D. STITTSWORTH, JR.

Introduction 387
Common Characteristics of CMR Neurons 390
Specific Characteristics and Comparison of
Neurons in Different CMR Regions 399
Interaction of CMR Regions 400
Conclusions 401
References 402

29. Neuronal Network Interactions in the Startle Reflex, Learning Mechanisms, and CNS Disorders, Including Sudden Unexpected Death in Epilepsy CARL L. FAINGOLD, SRINIVASAN TUPAL

Introduction 407
Dual Network Interactions 409
Multinetwork Interactions 410
Conclusions 415
References 416

30. Emergent Properties of Neuronal Networks CARL L. FAINGOLD

Emergent Properties of Neuronal Networks 419
Types of Emergent Properties 423
Levels of Emergent Properties 423
Respiratory Networks of the Brainstem 424
Motor Control 424
Sensory Processing 424
Normal Brain State Transitions 425
Cognition and Memory 425
Neurological Disorders—Epilepsy 425
Psychiatric Disorders 426
Conclusions 426
References 426

31. Neuronal Network Involvement in Stimulation Therapies for CNS Disorders

CARL L. FAINGOLD, HUA-JUN FENG

Introduction 429 Noninvasive Stimulation Modalities 429 CONTENTS xi

Invasive Stimulation Modalities 433
General Neuronal Network Mechanisms of Stimulation
Therapies 434
Conclusion 439
References 439

32. Neuronal Network Effects of Drug Therapies for CNS Disorders CARL L. FAINGOLD

Introduction 443 The Brainstem Reticular Formation Arousal Network 444 The Centrencephalic Theory of Generalized Epilepsy 444 CNS Drugs Dosage 445 Mesoscopic Networks and CNS Drugs 445 The Brain You Anesthetize May Be Your Own 445 Drug Effects on Network Emergent Properties 446 Selective Effects of CNS Drugs: Therapeutic Doses 446 Drug Effects on Rhythmic Oscillations of the Brain 447 Pharmacological Magnetic Resonance Imaging Studies 447 Drug Effects on Intact Neuronal Networks 448 Stimulant Drug Effects on Neuronal Network Neurons 448 Stimulant Drug Effects and Cognition 448 Depressant and Anesthetic Drug Effects on Neuronal Networks 450 Effects of Ethanol on Neurons in Neuronal Networks Ethanol and Emergent Properties of Neurons 452 Effects of Anticonvulsant Drugs on Intact Neuronal Networks for Seizures 453 Anticonvulsant Actions on IC Neurons 454

Anticonvulsant Actions on PAG and BRF Neurons 455
Anticonvulsant Actions on the Substantia Nigra
Reticulata (SNr) 456
Emergent Properties: Differences between In vivo
and In vitro Studies 457
Understanding Emergent Properties as Critical Drug
Targets 457
"Anticonvulsant" Drug Effects on Networks
for Multiple CNS Disorders 458
CNS Drugs and Long-Lasting Network Changes 460
Conclusion 460
References 461

33. Future Trends in Neuronal Networks—Selective and Combined Targeting of Network Hubs CARL L. FAINGOLD, HAL BLUMENFELD

Introduction 467
General Approach to Neuronal Network Exploration 468
Mechanistic Studies of Drug Actions on Networks 472
Specific Approaches to Neuronal Network Mechanisms 473
Network Effects of Competitive NMDA Receptor
Antagonists 473

Network Effects of Competitive NMDA Receptor
Antagonists 473
Generalized Convulsive Seizure Network 473
Absence Epilepsy Networks 474
Temporal Lobe Complex Partial Seizure Networks 475
Examples of Potential Future Applications 476
Conclusion 481
References 481

Index 487

1

Introduction to Neuronal Networks of the Brain

Carl L. Faingold 1, Hal Blumenfeld 2

¹Departments of Pharmacology and Neurology, Division of Neurosurgery, Southern Illinois University School of Medicine, Springfield, IL, USA, ²Departments of Neurology, Neurobiology, and Neurosurgery, Yale University School of Medicine, New Haven, CT, USA

INTRODUCTION

In recent years, it has become clear that an understanding of the brain's neuronal networks is a critical requirement for understanding normal brain function. In addition, an understanding of how neuronal networks are altered in central nervous system (CNS) disorders is yielding improved insights on the mechanisms of these disorders. Finally, knowledge of the properties of neuronal networks has a significant potential to improve the targeting of therapies for these CNS disorders, as discussed in Chapters 31 and 32.

"SILOS" IN CNS NETWORK RESEARCH

Much of recent brain-related research has emphasized molecular, genetic, and single-channel recording techniques. As valuable as these approaches are, it has become clear that research at the network and the network interaction levels are also vitally important to understanding brain function. However, much of the network-related research that does occur has involved evaluating "single-function" networks, such as the visual or auditory systems. No one can deny the importance of these approaches and the need for further research in these specific functional areas, some of which are covered in several of the chapters in this book. Unfortunately, this approach can yield a "silo" effect, where one area of research rarely considers the interaction of the specific network with other brain networks. A possible critique of the network interaction idea is that the level of knowledge of each single network is still incomplete, so it is premature to try to connect them, which may explain why potentially important "cross-silo" research is relatively uncommon. However, it is a major thrust of this volume that a better understanding of brain function, brain disorders, and therapy of these disorders is needed now to alleviate human suffering from the disorders, many of which involve cross-silo network interactions.

TYPES OF NETWORK INTERACTIONS

Network interactions can take several different forms and occur to varying degrees (Chapter 29). The main types of interactions are positive and negative interactions, as shown in the simplified diagram in Figure 1.1. Positive network interactions can involve the projection of an individual network, which can activate another network. In the example in Figure 1.1, Network 1 is shown as not undergoing a significant degree of self-organization, and Network 2 is depicted as capable of self-organization. The degree of selforganization is a critical network property, which can lead to an important network characteristic—an emergent property—which is discussed in this chapter and in detail in Chapter 30. Activation of Input 1 activates Net 1 and leads to Function 1. An example of Input 1 might be a simple acoustic stimulus to the auditory network (Net 1) and results in Function 1, perception of the acoustic stimulus. Net 2 could be the network that controls locomotion, which is subject to a considerable degree of self-organization and in nonexigent states maintains postural control or mediates ambulation (Function 2). Self-organization, which is a major feature of many neuronal networks, can lead to nonlinear amplification of network function (see Chapters 28 and 32). Net 1 and Net 2 can interact in a positive or negative way. Thus, an intense sensory stimulus, which is potentially exigent for the organism, can cause a major motor response by activating the locomotion network. An example of this is the acoustic startle

FIGURE 1.1 Simplified diagram of potential network interactions and mechanisms. Both positive (+) and negative (-) interactions can occur, as indicated by the signs above and below the arrow. The two networks are symbolized by the ovals (Net 1 and Net 2). Net 1 has an exogenous and/or endogenous input (Input 1). For simplicity, the input to Network 2 is omitted, but it may be spontaneously active. Each network is considered to have a function and behavior that it controls (Function 1 and Function 2). Net 1 is shown as not undergoing a significant degree of self-organization, as illustrated by the convention of a single semicircular arrow, and Net 2 has paired semicircular arrows and readily undergoes self-organization. Positive network interactions can involve the activation of one individual network, which then activates the second network. For example, Net 1 could be the auditory network, which is responsible for the organism's ability to perceive acoustic stimuli, and Net 2 could be the locomotor network responsible for the organism's ability to move. An example of the interaction of these networks is the acoustic startle response, in which an intense or unexpected auditory stimulus results in projection from the auditory network to the locomotor network that results in a rapid motor movement (jump or flinch), which would be Function 3. A second major form of network interaction that occurs is a negative interaction. This is where the activation of one network can interfere with the function of a second network. An example of a negative network interaction between these same networks would occur if the acoustic stimulus were a creaking noise underfoot when the organism is walking that causes it to stop moving, because it may indicate an unsteady walking surface and a cessation of Function 2-mediated ambulation. Sometimes, two networks can be activated at overlapping times without apparent behavioral consequences.

response, in which an intense or unexpected acoustic stimulus induces a motor movement (jump or flinch) (Function 3). This is an example of a positive interaction of elements of the auditory network with elements of the locomotor network. A second form of network interaction that occurs is a negative interaction. This is where the activation of one network can interfere with the function of a second network. An example of a negative network interaction between these same networks would occur if the acoustic stimulus were a

creaking noise underfoot when the organism is walking that causes it to stop moving, because it may indicate an unsteady walking surface and a cessation of Function 2-mediated ambulation. Interactions of different stimuli within the same network can also occur and lead to changes in function. An early prototype of a negative network interaction is the "gate theory of pain" at the spinal cord level¹ (see Chapter 23). Network interactions can exert a beneficial or harmful effect for the individual, depending on the situation. Sometimes, two networks can be activated at overlapping times, but there are no apparent behavioral consequences for the individual. For example, innocuous auditory and visual events can often occur in close temporal proximity, but, unless this sequence of events is repeated or one of the stimuli is not innocuous, no effect on the individual's behavior is observable.

EPILEPSY AS A TEMPLATE FOR NETWORK STUDIES

Some of the most prominent examples of network interactions are seen in the group of CNS disorders called the epilepsies, and these diseases will be emphasized in this book. The question that could be raised is "Why emphasize epilepsy?" Epilepsy has long been considered an important research window into brain mechanisms.2 Modern human brain research started in earnest with the original studies of Berger, who discovered the human electroencephalogram (EEG),³ which was followed by pioneering research on the EEG of epileptic patients,4 elucidating both normal and abnormal EEG patterns. Invasive studies have proven critical to evaluating brain function; these were pioneered by the eminent neurosurgeon Wilder Penfield,5 who was the first to successfully map the cortical surface in awake patients. This exploration could be done ethically because these patients had intractable epilepsy that potentially required neurosurgery, which can be curative. The leading role of epilepsy studies in neuroscience research and particularly in neuronal network research⁶ has extended from the 1950s to today. The recording of single neuronal firing in the awake brain, which is highly instructive of brain function and dysfunction, 7,8 has been done almost exclusively in epilepsy patients. For ethical reasons, the use of neuronal recording is possible in patients in few other CNS disorders. However, this recording technique can greatly facilitate subsequent epilepsy surgery, which remains an important treatment modality for seizure control in intractable epilepsy cases. Finally, the nature of essentially all forms of epilepsy involves disordered network function,6 often on such a pervasive scale that the