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Preface

(a) Welcome back on board! You will have noticed that for this second leg of your
journey, there are two pilots rather than one. D.W. is sure that you will be as
delighted as he is that control is being shared with L.C.G.R.—amongst so many
other things, just the man for a Wiley excursion!

We apologize for the considerable delay in departure. Anyone who knows

what has been happening to British universities will need no further explanation,
and will share our sadness.

(b) Thebook is meant to help the research student reach the stage where he or she
can begin both to think up and tackle new problems and to read the up-to-date
literature across a wide spectrum; and to persuade him or her that it is worth the
effort.

We can say that we ourselves find the subject sufficiently good fun to have
enjoyed the task of writing. (We even had some amusement from typing the
manuscript ourselves with the very basic non-mathematical word-processor
VIEW on the BBC micro. Occasionally, we got into trouble when trying to use
global editing to substitute the most commonly occurring phrases for shorthand
versions of our own devising. But, in the main, we were very satito’s formulaied!)

(c) Chapter IV, Introduction to Itd calculus, is particularly concerned with
developing the theory of the stochastic integral (of a previsible process) with
respect to a continuous semimartingale, and with giving a large number of
applications. Chung and (Ruth) Williams [1] would make a splendid companion
volume for this chapter.

Chapter V, Stochastic differential equations and diffusions, presents first the
theory of SDEs: existence and uniqueness for strong and weak solutions,
martingale problems, etc. It has an extended treatment of 1-dimensional
diffusions, and a huge attempt to introduce the very fashionable subject of
stochastic differential geometry. Strongly recommended ‘parallel’ reading for this
chapter: McKean’s sparkling book [1] and the authoritative Ikeda and
Watanabe [1].

Chapter VI, The general theory, presents la theorie generale: dual previsible
projections, the Meyer decomposition theorem, the general integral, etc., with a
chunky piece on excursions. The literature on the general theory is dominated by
the masterly account by Dellacherie and Meyer ([1]) who created so much of it.

Dellacherie’s own very fine survey article [3], Jacod (21, Metivier and Pellaumail
[1] should also be consulted.
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In everything, the Russian literature, as represented by such important
volumes as Gikhman and Skorokhod [1] and Liptser and Shiryayev [1], has its
own characteristic style and special value.

(d) The book has a large bibliography, but this represents a small and rather
haphazard selection of what we should have included. We apologize for the
enormous number of very important papers which are omitted.

Numerous important topics are omitted too, or given treatment far too brief
for their true significance. (Reviewers who find the previous sentence handy are
free to use it without acknowledgement.) So, here are some guidelines on what
you might move on to when your reading of our book is done.

(e) (i) Large deviations. The recent appearance of books by Stroock [4] and the
grandmaster himself, Varadhan [1], would have made any efforts from us look
silly. This is the only reason for our omission of this topic and for the (otherwise
scandalous) omission from the bibliography of the historic papers by Donsker
and Varadhan and by Ventcel and Freidlin.

(i) Malliavin calculus. See § V.36.

(ii) Large deviations and Malliavin calculus. See Bismut [4], and also
Elworthy and Truman [1, 2] for important work which provided motivation.
Keep a look out for forthcoming work by Léandre.

(iv) Markov processes. The value of the classics mentioned in Volume 1—
Blumenthal and Getoor [1], Getoor [1], and Meyer [3}—remains as great as
ever. Sharpe [1] is sure to be a definitive account, as (of course) is that provided by
later volumes of Dellacherie and Meyer [1]. (Volume 4 of the latter has arrived
just as we are posting off the final proofs. Splendid to look forward to reading it!).
The volumes in the ‘Seminars on stochastic processes (Cinlar, Chung and Getoor
[13) are important state-of-the-art reports.

Ethier and Kurtz [1] is a valuable source for much theory, for the
establishment of weak-convergence results, etc. Liggett’s account [1] of one of the
most important application areas, interacting particle systems, is magisterial,

For a profound study of the relationship between Markov processes and
semimartingales, see Cinlar, Jacod, Protter and Sharpe [1].

For applications to potential theory and complex analysis, see Doob [3],
Durrett [1], and Port and Stone [3]. Two papers by Lyons [1, 2] are very much
recommended. '

(v) Quantum theory. So much has been achieved in interrelating quantum
theory and probability that one hardly knows where to begin, but an excellent
lead-in is provided by de Witte-Morette and Elworthy [1].

Itisessential to realize that some of the finest work on probability is being done
by people who are first and foremost mathematical physicists or functional
analysts. See Simon [1, 2], Davies and Simon [1], Aizenmann and Simon [1],
and the literature you can trace through them.

Local time and self-intersection local time have come to play a big part in the
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construction of quantum fields. See Geman and Horowitz [1], Rosen [1],
Geman, Horowitz and Rosen [1], Le Gall [2, 3], Yor [4, 5] and then Dynkin
[5, 6, 7] to begin your study in this area.

Whatever the philosophical problems, Nelson’s stochastic mechanics is certain-
ly prompting very interesting mathematics. See Nelson [1, 2] and Carlen [1, 2].

A fascinating theory of non-commutative stochastic integrals and of non-
commutative SDEs has been created by Hudson and Parthasarathy. Meyer
[1, 2] is a splendid attempt to make probabilists informed and involved.

(vi) Measure-valued diffusions, random media, etc.. Durrett {2] and Dawson
and Girtner [1] can be your ‘open sesame’ to what is sure to be one of the richest
of Aladdin’s caves.

(vii) The Séminaires. It is impossible to overstate our indebtedness to the
famous Séminaires de Probabilites, originated by Meyer and developed by him
(with help from Dellacherie and Weil) into an absolutely indispensable hand-
book, and now maintained as such in Azéma and Yor’s expert hands. Séminaire

XX: Springer Lecture Notes in Mathematics Volume 1204, contains an index to the
series so far,

(f) Further acknowledgements. The work on this book has been done at the
Universities of Wales (Swansea), Warwick and Cambridge, all of which deserve
our thanks.

Most was done at Swansea where both of us spent very happy times. Special-
thanks to Aubrey Truman, Peter Townsend and Betty Williams.

We thank our colleagues at Cambridge for their warm welcome; and are
pleased to acknowledge the help and advice we have received from many,
especially Frank Adams, Keith Carne, David Kendall and James Norris.

Our best thanks to Sheila Williams, amanuensis extraordinary, who is just
about to rediscover after a long period that there are such things as a dining-room
table and a sideboard in the Williams household.

And, of course, our thanks to Charlotte Farmer, Robert Hambrook and the
other staff of Wiley for making sure that it has become a reality; and to copy
editors, and to wonderfully accurate typesetters.

Cambridge, October 1986 Chris Rogers

David Williams
Added, April 2000

Our thanks too to the staff of C.U.P, especially David Tranah, and also to
the wonderfully accurate typesetters for their superb ‘invisible mending’.
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CHAPTER IV
Introduction to Itd6 Calculus

Here, we give the gist of the ‘martingale and stochastic integral’ method, and
illustrate its use via a large number of fully-worked examples. We do not
apologize for sometimes advertising the method by showing how it can obtain
results which are well known and elementary. Thus, for example, we take the
trouble to prove some standard results about the humble Markov chain with
finite state-space. But we have also tried to bring into this chapter applications
which are less elementary, and which hint at the excitement of the subject today.

TERMINOLOGY AND CONYENTIONS

R-processes and L-processes

We now use the term R-process on [0, o) to signify a process all of whose paths
are right-continuous on [0, o) with limits from the left on (0, ). Thus an
R-process is what was called in Volume 1 a Skorokhod process, and what is called
elsewhere a cadlag process, or a corlol process, or whatever. An R-function or R-
path on [0, ) is defined via the obvious analogous definition.

The L-processes on (0, o), all of whose paths are left-continuous with limits from
the right, will now begin to feature largely in the theory.

Usual conditions, etc.

Everywhere in this chapter, we work with a set-up (Q, %, {#,}, P) satisfying the
‘usual conditions’. See (I1.67).

All martingales (and ‘finite-variation processes', and ‘semimartingales) will be taken
to be R-processes. Because we are assuming that the usual conditions hold, this is in
order. See (11.67).

We shall also always assume that a process { X : t > 0} is jointly measurable; that is,
the map (t, W)+ X, (w) is measurable with respect to # ®R*Y) x .7

Recall that the process X is said to be adapted if X, is F,-measurable for every t 2 0.

1



2 INTRODUCTION TO ITO CALCULUS Iv.1

Important convention about time 0

Our stochastic integrals will be defined over intervals (0, t] open at 0. Thus, the
value of the integral at time O will be 0. This differs from the convention in
Dellacherie and Meyer [1]. As explained there, time O plays le réle du diable. We
consign it to Hell.

In accordance with this convention, the parameter set for our previsible
processes will be the open interval (0, o).

1. SOME MOTIVATING REMARKS

1. 1t6 integrals. One of our main tasks is to define the 1t6 integral

[rax,

where H and X'are stochastic processes of appropriate classes.

We shall regard this integral as a new stochastic process, often written H+X,
and shall use the alternative notations:

.y (HeX)(t, w)=(J H,dX,)(w).
. 10,1)

We shall often use differential notation, in which we can rewrite equation(l.1)asa
‘stochastic differential equation™

(1.2) d(H*X)=HdX.

The theory is now essentially complete in the sense that it is known exactly
what conditions need to be imposed on our integrand H and integrator X:

The essential requirement on the integrand H is that it be ‘previsible’.
The integrator X must be a ‘semimartingale’

The most important example of a previsible process is provided by an adapted
L-process. Indeed, the adapted L-processes ‘generate’ the previsible processes, as
will be explained later. Let H be an adapted L-process. Then H, is known to the
observer at time 5. The reason that H is ‘previsible’ is (roughly speaking) that, for a
stopping time 7> 0, H, is known immediately before time T because

Hp=lim H.,.
SiiT

The simplest adapted L-process is the process

(1.3) H=18,T],
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where S and T are stopping times with § < T. Thus,

1 if S(w)<t < T(w),
0 otherwise.

H(t, m)={

Let M be a martingale. Then, for H as in equation (1.3), the obvious definition of
H*M is:
(H*M),= MTM_ Msnn

and we can easily show that H°M is a martingale.

From this simple case develops the most fundamental property of It6 integrals:

(1.4) ITO INTEGRALS PRESERVE LOCAL MARTINGALES. It will do no
harm to give a precise statement of this now. The reader new to the subject will
not know what Theorem 1.5 means, but it will help him or her to know that it is
one of the main landmarks in our route through the subiject.

(1.5) FUNDAMENTAL THEOREM. If H is a locally bounded previsible
process and M is a local martingale, then H*M exists and is a local martingale.

We could very easily explain now what a locally bounded previsible process is.
We could also easily explain what a local martingale is; indeed, let us do it;

(1.6) DEFINITION (local martingale): 4 process M is a local martingale if M,
is o measurable and there exists an increasing sequence of stopping times (T,) with
T, 1o such that each ‘stopped’ process

{‘wT"/\l—MO: t?o}
is a martingale.

What we cannot explain in a short space is what H*M means in the generality of
Theorem 1.5. But the discrete-time setting explains why Theorem 1.5 is true.

(1.7) Adiscrete-time analogue. Let (Q, 7, {F,}, P)be a discrete-time set-up, and

let M be an associated martingale. Let H be a bounded process previsible in the
sense that

Z, ,=H,ebs,_, (neN).
Define:

(H'M)n=k;1Hk(Mk—Mk~1}=kzlzk-1(Mk‘ M, )

(H*M),=0.
Then H*M is a martingale.
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Progf. To show that a process N is a martingale, we need only show that
E[Nn_Nu-liyn—t]=0a nel.
But, since Z,_,eb.#,_,,

E[(H'M)n_(H.M)n—llyn—1]=E[Zn—l(Mu_Mn—l)lyn—l]
=Zn—lE[Mn_Mu—lI~7n—l]=0‘ O

As was mentioned earlier, the general ‘integrator’ X will be a semimartingale.
This means that X may be written in the form

(1.8) X=Xo+M+A,

where X, is 7, measurable, M is a local martingale null at 0, and A is an adapted
process with paths of finite variation, also null at 0.

In this chapter, we present the full theory for two special cases of great
importance:

(1) the case in which X = A, a process with paths of finite variation;

(ii) the case in which the paths of X are continuous.
This will allow us to develop many of the main applications. The general theory is
given in Chapter VI.

If Ais a process with paths of finite variation, then (for a bounded measurable
process H) we can define H*A as the Stieltjes integral for each w:

(HA)(t, w)= H(s, w)dA(s, o).
0,1}
Though no new concept of integration is involved here, the theory is extremely
useful because of what Theorem 1.5 says in this context:

(1.9) THEOREM. Let H be a locally bounded previsible process, and let M be a

local martingale with paths of finite variation. Then H*M, as defined by the Stieltjes
integral, is a local martingale.

If M is a (path-) continuous local martingale, then the paths of M generally will
not have finite variation. Indeed, the only paths of finite variation will be
constant! Thus the integral H*M (where H is a locally bounded previsible process)
is a true extension of the Stieltjes integral. The very existence of the integral is
inextricably tied up with its calculus, that is, with the integration-by-parts formula
and the piece de résistance of the theory, It6's formula.

2. Integration by parts. The most important integral associated with a local
martingale M is the integral f0.nM;_dM_. The adapted L-process M _=
{M,_: s>0} is previsible and also locally bounded, so the integral exists. More
generally, if X and Y are semimartingales, then the Ito integral [X,_dY, may be
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defined. Now the integral [X,_dY, is analogous to a sum of the form

(2.1) Zxk—x()’k"}’k—l)-
The summation-by-parts formula for such sums:

(2.2) XpYn—X0Yo = kzlxk— 1= Y- 1)+kzl}’k— X — x4~ 1)

+i:l(xk‘“xk— D= Yi-1)

suggests the fundamental integration-by-parts formula for semimartingales:

X.-av,+ |

0,1

(23) XIYI_XOYO'_"l[

0.1)

Y,-dX,+J dX,dY,.

(o| ‘]
But what sense are we to make of the last term in (2.3)?

Itis easy to helieve (and to prove!) thatif X and Y have paths of finite variation,
then the correct interpretation is as follows:

24) J‘ dX,dY,= 2 (XS—XS_)(Y’—Y,_).
0,1

0<s<gt
What happens if X and Y are path-continuous martingales? To gain insight into

this situation, and into more general situations, we again look at a discrete
analogue.

(2.5) A discrete-time analogue. Let M={M,: n>0} and N={N,: n>0} be
martingales on a set-up (Q, %, {#,}, P) such that for all n, EM2 < o0, EN2 < co.
Take x, = M (w), y,= N, (w) in (2.2) to see that

M,N"—M0N0=kile_ A(Ny—N, 1)+k‘;N,‘_,(M,‘—M,,_,)+k2:‘,lAM,‘AN,‘,
where AM,=M,—M,_, and AN,=N,—N,_,. Now (compare (1.6)):
Un'-'-k‘; M,_(N,—N_,)
defines a martingale U because

E[Un_Un—l!yn—l]=Mn—lE[Nn—Nn—ll‘y-n—l]"_‘o'
Hence, if we put

[M‘ N]"= Z AMkANk,
then =

M,N,—M,Ny—[M, N1, is a martingale.



