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Preface

Equations of Mathematical Physics, as an important specialized basic
course of universities (or colleges), has close relation with the modern science
and engineering technique, and has wide use as the applying mathematical
basis. '

Besides showing basic concepts and principles on partial differential equa-
tions (brief~PDEs), the focus of attention in this book is discussing main
methods and techniques for solving basic definite problems.

The contents of this book are developed as follows. The first chapter is
concerned with basic concepts and definitions on partial differential equa-
tions.

In Chapter 2, typical mathematical models (string oscillation, heat con-
duction and Laplace equations) describing basic physical phenomena and
basic problems for defining solutions are showed.

In Chapter 3, the classification, simplification and typical forms for linear
second order PDEs in two independent variables are demonstrated.

In Chapter 4, the integral method on characteristics for solving hyperbolic
and parabolic equations are showed.

In Chapter 5, the method of separation of variables for solving the prob-
lems with boundary conditions on finite regions are discussed.

In Chapter 6, the eigenvalue problems and corresponding Sturm-Liouville
problem as well as special functions are presented. In addition, the Green
function method for solving boundary value problems of linear second order
ordinary differential equations is showed.

In Chapter 7, some important examples, as applications of separation of
variables for solving multidimensional problems with complicated boundary
conditions, are described.

In Chapter 8, the definition, basic properties on Fourier and Laplace inte-
gral transformations and some applications for solving the definite problems
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in unbounded region for PDEs are showed.

In Chapter 9, the definition, basic properties of the harmonic function and
some applications concerning boundary value problems for Laplace equation
are presented.

In Chapter 10, the definition, basic properties of Green functions and
important applications for solving Dirichlet and Neumann problems of the
equations with Laplace operator are showed.

Hongzheng Xie
2006.1
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Chapter 1
Introduction

1.1 Equations of mathematical physics

Mathematical physics is an inter-relating science. On the basis of the fun-
damental laws of physics, mathematical methods are used to study processes
evolving in material media. Its purpose is to formulate equations describing
a process within a reasonable degree of idealization (i.e., disregarding de-
tails that are not essential for its qualitative and quantitative essences), to
develop methods for solution of the resulting problem, and to analyse the
qualitative and quantitative properties of the solutions. In this latter respect
mathematical physics borders on numerical analysis and mathematical sim-
ulation, but in its most important aspects it borders on the theoretical and
even experimental natural science.

We shall restrict our attention to phenomena of the “macro” world-more
precisely, to processes evolving in continuous media. At this point some
elaboration of the very notion of a continuous medium is desirable, since at
first sight it might seem incompatible with an atomistic view of the universe.
The notion of continuous medium is related to the following notion of a
physical element of volume. Consider some process evolving in a region
D c R? and let K C D be a subset of positive three-dimensional measure
with diameter d: ’

d= 1.
IaX MAX g, (1.1.1)
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where 7,4 is the distance between points p and ¢. Fixing p € K, consider it as
a representative of K. Assume that d is much smaller than the characteristic
size of D (e.g., the upper limit of the diameters of all spheres contained
in D), but that the number of individual material particles in K is very
large and their maximum size is very small compared with d. Consider some
physical characteristic F' of particles in K (e.g., the velocity V at time t of
the individual particles in K). Let F(p,t) denote the value of F averaged
over all particles in K. The medium in D may be called continuous with
respect to F' if F (p,t) is a continuous function of p and t everywhere in D,
except for finitely many sets of points of zero three-dimensional measure (ie.,
except for finitely many surfaces, lines, or separate points). If the medium is
continuous with respect to all physical parameters of relevance for the process
in question, one can speak of the medium as simply continuous.

Processes in nature may be divided, roughly speaking, into three groups:
(1) stationary processes, in which the state of the system is independent
of time; (2) dissipative time-dependent evolution processes; (3) conservative
evolution processes.

There is a similarity among the fundamental laws governing processes of
the same group. For examples, Fourier’s law of heat conduction, Fick’s law
of diffusion, and Darcy’s law of liquid percolation through porous media are
identical, up to renaming of the variables. Indeed, Fourier’s law read: the
amount of heat flowing in an isotropic homogeneous thermally conductive
body through a surface element dé in the direction of the normal n to dé in
time df is

J - -
dg = ~A\—T4do 1.1.
d /\a'n, odt, (1.1.2)

where T is the temperature and the minus sign indicates that the heat is
flowing in the direction of decreasing temperature, so the coeflicient X of
thermal conductivity may be assumed positive.

Now Fick’s law reads that the mass of a solute transferred by diffusion
in an isotropic solution through a surface element do in the direction of the
normal n to dé in time dt is

dg = —[)%C‘d&di, (1.1.3)

where C' is the solute concentration.
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Finally, Darcy’s law reads that the mass of liquid percolating through the
pore space of a homogeneous porous medium through a surface element do
in direction of the normal n to dé in time df is

P |
dg = -K%pdadt, (1.174)

where p is the pore pressure and K is the percolation coefficient. The tilde
“~” indicates that variables are dimensional.

All these phenomenological laws are of the same form, written in terms
of dimensionless variables, and they are indistinguishable. It is this possibil-
ity of simultaneously describing processes of a different physical nature, but
belonging to the same group, that makes mathematical physics a universal
language of the continuum, a connecting link between different disciplines of
physics, chemistry, biology, and so on. The interrelation between the vari-
ous properties of partial differential equations and their natural prototypes is
very profound and helpful for research. Quite frequently, previously unknown
mathematical phenomena are discovered by looking for the explanation of a
natural phenomenon and vice versa, a natural phenomenon may be predicted
by analyzing the properties of the corresponding mathematical object.

In general, the equations of mathematical physics include partial differen-
tial equations (PDEs), ordinary differential equations (ODEs), integral equa-
tions and integral-differential equations which are presented from Physics,
Mechanics, Astronomy, Chemistry, Biology and Engineering. However, PDEs
are main contents and also main topics of our study.

1.2 Basic concept and definition

Partial differential equation
Typical form:

f(.Z‘l,.Z‘z, Ty Uy Ugyy Ugy,y 0 s Ugyay s Uayazgs 70 ) =0, (*)
where
1,2, - —independent variables; -
u = u{x1,x9, - )—unknown function of independent variables;
Ugy, Ugy, " * * Ug, 315 Uz a0, - - - ——Partial derivatives of unknown function u
on independent variables zi,z9, -- and

T1x2 €D CRY, n>2
where R"—n-dimensional Euclidean space; D—open region in R".
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The solution of equation ()

If there exists a sufficiently smooth function v = u(z1, 22, - )(i.e., there
are various continuous partial derivatives in D which appear in the equation
(%) and u(xy,zs,---) is continuous on D), such that u(xi,z2,- ) satisfies
the equation () in D, then the u(z1,z2,---) is called the solution of the
equation (x).

Examples. Partial differential equations:

UlUgy + Uy = Y,

Ugz + 2YUzy + 3TUyy = 4sinz,

(uz)? + (uy)* =1,

Ugg — Uyy = 0.

It is easy to verify that the two functions u(z,y) = (z + ¥),u(z,y) =
sin(z — y) are the solutions of the equation uzy — uyy = 0.

Order of partial differential equation

—— the highest order among all orders of partial derivatives of unknown
function u in equation (x).

Examples. Uz + 2uugy + Uy, = €¥ is a second order equation, and
Ugzgy + TUyy + 8u = Ty is an equation of third order.

Linear equation. All unknown functions and their partial derivatives
are linear and all coefficients in the equation only depend on independent
variables.

Quasilinear equatlon All the partial derivatives of the highest orders
are linear but the equation is not linear.

Nonlinear equation. The partial derivatives of the highest order are
nonlinear.

Examples. yug; + 2zyuzy + uy = =° is a second order linear equation;
UgUgy + :ruuy = cosz is a second order quasilinear equation; (uxy) + Sug +
e¥u = y? is a second order nonlinear equation.

2

General form. Second order linear partial differential equation with
n-independent variables is

n n
3" Aijtigz; + Y Bittg, + Fu =G, (%)
i,j=1 i=1
where A;; = Aj;, B, F and G are functions depending only on n-independent
variables.
Homogeneous equation. if G = 0.
Nonhomogeneous equation. if G # 0.
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The general solution of partial differential equations depending on arbi-
trary functions is different from ordinary differential equations depending on
some constants.

Examples.

1° uzy = 0 = ug(z,y) = f(z) = ulr,y) = g(z) + h(y), where g(z) and
h(y) are arbitrary continuously differentiable functions.

2° Suppose u = u(z,y,2) and uy, = 2, then we can obtain the general
solution

w(z,y,2) = y° +yf(z,2) + g(g, ),

where f and g are arbitrary continuously differentiable functions on two
variables z, z.

Construction of the solution of n th-order partial differential equations is
different from n th-order ordinary differential equations with finite (n) lin-
early independent functions, which can include infinite linearly independent
functions.

Example. u; — uy = 0 using transformation on variables

{§=w+%
n=x-—-Y,

can get 2u, = 0 and obtain the general solution

w(z,y) = flz +y),

where f(xz+y) is arbitrary continuously differentiable function which includes
infinite functions, such as

(m+y)n7 Sinn(x+y)) COSR($+y), expn(a:+y) (n = 1’2737"')7

and these functions are linearly independent.

1.3 Linear operator

Operator. The mathematical operational rule by acting a function gen-
erates another function.
Example.

ou  u  Pu %y ,0%

L[U]ZEJ:-FEE-FE?, M u)

=52 T o
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2 3 2 2
9 4 and M = _8__ - xz—a— are called differential

whereL-—B——{--———-—i-——
T Ox  Oxdy  Oy3 0x? Oy

operators.

b
, Plu] = / u(z, 7)F(7,y)dT, a and b are constants,
a
Qlu) = ulz,c) + ug(z,c), c is constant,

where P is an integral operator and Q is a special operator which transforms
a function with two variables « and y to another function with one variable
x.

If operators A and B acting any functions of a set, can generate the same
result, then A and B are called equivalent operators in this set and denoted
by A= B.

Thus, we have

Alu] = Blu].

The definition of the sum of two differential operators A and B is that
(A + B)[u] = Afu] + Blu],

where u is a function.

The product of two operators A and B is the operator whose action to
a function is the same with the action of B and A in sequence, namely

ABlu] = A(B[u}).

Differential operators satisfy the following four properties:
(1) commutative law of addition

A+B=B+A4;
(2) associative law of addition
(A+B)+C=A+(B+C);
(3) associative law of multiplication
(AB)C = A(BCY);
(4) distributive law of multiplication to addition

A(B+C) = AB + AC.
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Except above results, in general, the following commutative law of mul-
tiplication
AB=BA

is not true. If all coefficients of differential operators are constants, the
commutative of multiplication law is valid.-
Example. Let
o2 0 0? 0

- - B=— —y—
552 T Yy a2 Yoy (zy # 0),

then 82 5
u U
Blu
[u] = o9 2 ~ Y5y 2
o o\ (6%u  Bu
A =y ) (2= — 2=
Bl (6w2+x6y> <3y2 yay)
2oy Yortay T Tagr T Mayr T Yoy
But 02 o\ [0 0
u (7
BAu] = ( 2 yay) (—3;5+x3_y>
ot A3u Bu 8%y

- Oy20z2 t x%i B yayax2 B myw,
thus AB[u] # BA[u].
Linear operators satisfy the following property:

L{au + bv] = aL[u} + bLv],

Where a and b are constants.

The form of linear second order partial differential equation with two
variables is '

Az, Y)ugetB(x, Y) ey +C (2, Y)uyy+D(x, y)us+E(z, y)uy+F(z, y)u=G(z,y),

where A, B,C, D, E, F are the functions on variables = and y, G(z,y) is the
nonhomogeneous term.
" 0? 0? 02 0 0
A—+B———+C—
L= 6$2+ Doy + 62+D6 -{-E(9 + F,

then the equation can be written as follows:

Lul=G, or Lu=4G.
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Exercises

1. For the following equations, specify that (a) which one is linear or quasilinear or

nonlinear; (b) which one is homogeneous or nonhomogeneous; (c) the order of
each equation.

(a) Ugs + TUy = ¥;
(b) uuy — 2zyuy = 0;
(c) uZ + uuy = 1;
(d) Ugzzr + 2$292uzzyy + ySUyyy =0
(8) u2, +u2 +sinu = e¥.
2. Verify that two functions

u(z,y) =22 —y*> and u(z,y) = e®siny
are the solutions of the equation
Uz + Uyy = 0.
3. Prove that u = f(x,y) satisfies the equation
TUz — YUy = 0,

where f is an arbitrary differential function, and verify that sin(zy), cos(zy),
In(zy), e*¥ and (zy) are the solutions of this equation.
4. Prove that u = f(z)g(y) satisfies the equation

Ulgy — UgUy = 0,

where f and g are arbitrary twice continuously differential functions.
5. Let u, = v, find the general solution of the equation

Ugy + Uz = 0.
6. Let u(z,y) = f(Ax + y) is the form of the solution of the following equation
Ugg — AUy + 3y, =0,

where ) is an unknown parameter. Find the general solution of this equation.
7*. Try to find the general solution of the equation

Uyy +u = 0.



