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Preface

Though quantum theory is celebrating its 100th anniversary this year, quan-
tum information processing is still a remarkably young research field. The
questions driving this research field reflect a profound change in the gen-
eral attitude towards the fundamental aspects of quantum theory. So far,
research on the foundations of quantum theory has been concerned mainly
with the theoretical exploration of those particular features which distin-
guish quantum theory from classical physics. The main intention of quantum
information processing is to exploit these specific features for technological
purposes. As early as 1935, Erwin Schrédinger had already noted that one of
these characteristic features of quantum theory is the phenomenon of entan-
glement. Many years passed from this early insight until John Bell realized
the quantitative consequences of the corresponding quantum correlations in
his famous work from 1964. These theoretical predictions inspired numerous
experiments, which all support the peculiar features predicted for quantum
correlations. From these purely theoretical insights, it again required a long
period of development to arrive at those potentially useful applications which
are now of central interest for the processing of quantum information.

The following contributions provide an introductory overview of basic
problems, methods and topical results in this research field. The idea of pro-
ducing this volume was born at a symposium on this subject which was held
at the 1999 annual spring meeting of the Deutsche Physikalische Gesellschaft
in Heidelberg. This symposium was organized jointly by the Quantum Op-
tics and Mathematical Physics sections. The widespread interest, the success
of this symposium and the initiative of Prof. Frank Steiner, the head of the
Mathematical Physics section, motivated us to edit a volume on basic prob-
lems, methods and recent results in this rapidly evolving field. This book
should be useful for students and active researchers in physics, computer sci-

ence and mathematics who want to learn about the most recent developments
in this exciting research field.

Ulm, March 2001 Gernot Alber
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1 From the Foundations of Quantum Theory
to Quantum Technology — an Introduction

Gernot Alber

Nowadays, the new technological prospects of processing quantum informa-
tion in quantum cryptography [1], quantum computation (2] and quantum
communication {3] attract not only physicists but also researchers from other
scientific communities, mainly computer scientists, discrete mathematicians
and electrical engineers. Current developments demonstrate that character-
istic quantum phenomena which appear to be surprising from the point of
view of classical physics may enable one to perform tasks of practical interest
better than by any other known method. In quantum cryptography, the no-
cloning property of quanturn states [4] or the phenomenon of entanglement
(5] helps in the exchange of secret keys between various parties, thus en-
suring the security of one-time-pad cryptosystems [6]. Quantum parallelism
{7], which relies on quantum interference and which typically also involves
entanglement [8], may be exploited for accelerating computations. Quantum
algorithms are even capable of factorizing numbers more efficiently than any
known classical method is {9], thus challenging the security of public-key cryp-
tosystems such as the RSA system [6]. Classical information and quantum
information based on entangled quantum systems can be used for quantum
communication purposes such as teleporting quantum states [10,11].

Owing to significant experimental advances, methods for processing quan-
tum information have developed rapidly during the last few years.! Basic
quantum communication schemes have been realized with photons {10,11],
and basic quantum logical operations have been demonstrated with trapped
ions [13,14] and with nuclear spins of organic molecules [15]. Also, cavity
quantum electrodynamical setups {16], atom chips [17], ultracold atoms in
optical lattices [18,19], ions in an array of microtraps [20] and solid-state
devices [21-23] are promising physical systems for future developments in
this research area. All these technologically oriented, current developments
rely on fundamental quantum phenomena, such as quantum interference, the
measurement process and entanglement. These phenomena and their distine-
tive differences from basic concepts of classical physics have always been of
central interest in research on the foundations of quantum theory. However,
in emphasizing their technological potential, the advances in quantum infor-

! Numerous recent experimental and theoretical achievements are discussed in [12].
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mation processing reflect a profound change in the general attitude towards
these fundamental phenomena. Thus, after almost two decades of impressive
scientific achievements, it is time to retrace some of those significant early de-
velopments in quantum physics which are at the heart of quantum technology
and which have shaped its present-day appearance.

1.1 Early Developments

Many of the current methods and developments in the processing of quantum
information have grown out of a long struggle of physicists with the foun-
dations of modern quantum theory. The famous considerations by Einstein,
Podolsky and Rosen (EPR) [24] on reality, locality and completeness of phys-
ical theories are an early example in this respect. The critical questions raised
by these authors inspired many researchers to study quantitatively the essen-
tial difference between quantum physics and the classical concepts of reality
and locality. The breakthrough was the discovery by J.S. Bell [25] that the
statistical correlations of entangled quantum states are incompatible with the
predictions of any theory which is based on the concepts of reality and lo-
cality of EPR. The constraints imposed on statistical correlations within the
framework of a local, realistic theory (LRT) are expressed by Bell’s inequality
[25]. As the concept of entanglement and its peculiar correlation properties
have been of fundamental significance for the development of quantum infor-

mation processing, it is worth recalling some of its most elementary features
in more detail. .

1.1.1 Entanglement and Local, Realistic Theories

In order to clarify the characteristic differences between quantum mechan-
ical correlations originating from entangled states and classical correlations
originating from local, realistic theories, let us consider the following basic
experimental setup (Fig. 1.1). A quantum mechanical two-particle system,
such as a photon pair, is produced by a source s. Polarization properties of

) B
SR
A B
i O i =

Fig. 1.1. Basic experimental setup for testing Bell’s inequality; the choices of the
directions of polarization on the Bloch sphere for optimal violation of the CHSH
inequality (1.3) correspond to ¢ = = /4 for spin-1/2 systems
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each of these particles are measured subsequently by two distant observers A
and B. Observers A and B perform polarization measurements by randomly
selecting one of the directions a; or a2, and 3, or 3,, respectively, in each
experiment. Furthermore, let us assume that for each of these directions only
two measurement results are possible, namely +1 or —1. In the case of pho-
tons these measurement results would correspond to horizontal or vertical
polarization.

What are the restrictions imposed on correlations of the measurement
results if the physical process can be described by an underlying LRT with
unknown (hidden) parameters? For this purpose, let us first of all summarize
the minimal set of conditions any LRT should fulfill.

1. The state of the two-particle system is determined uniquely by a parame-
ter A, which may denote an arbitrary set of discrete or continuous labels.
Thus the most general observable of observer A or B for the experimental
setup depicted in Fig. 1.1 is a function of the variables (a4, 3;, A). If the
actual value of the parameter A is unknown (hidden), the state of the
two-particle system has to be described by a normalized probability dis-
tribution P(A), i.e. f, dAP(A) = 1, where A characterizes the set of all
possible states. The state variable A determines all results of all possible
measurements, irrespective of whether these measurements are performed
or not. It represents the element of physical reality inherent in the ar-
guments of EPR: “If, without in any way disturbing a system, we can
predict with certainty the value of a physical quantity, then there exists
an element of physical reality corresponding to this physical quantity”
[24].

2. The measurement results of each of the distant (space-like separated)
observers are independent of the choice of polarizations of the other ob-
server. This assumption reflects the locality concept inherent in the argu-
ments of EPR: “The real factual situation of the system A is independent
of what is done with the system B, which is spatially separated from the
former” [24]. Thus, taking into account also this locality requirement, the
most general observable of observer A for the experimental setup depicted
in Fig. 1.1 can depend on the variables a; and A (for B, 3; and A) only.

These two assumptions, which reflect fundamental notions of classical physics
as used in the arguments of EPR, restrict significantly the possible cor-
relations of measurements performed by both distant observers. Accord-
ing to these assumptions, the following measurement results are possible:
a{a;,A) = a; = 1 (i = 1,2) for observer A, and b(3;,\) = b = %1
(i = 1,2) for observer B. For a given value of the state variable A, all these
possible measurement results of the dichotomic (two-valued) variables a; and
bi (i = 1,2) can be combined in the single relation

l(a1 + a2)b; + (a2 — a1)ba| = 2. (1.1)
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It should be mentioned that this relation is counterfactual [26] in the sense
that it involves both results of actually performed measurements and pos-
sible results of unperformed measurements. All these measurement results
are determined uniquely by the state variable A. If this state variable is un-
known (hidden), (1.1) has to be averaged over the corresponding probability
distribution P()). This yields an inequality for the statistical mean values,

(aib;)irr = /A d A P(\a(es, M(B,,N)  (irj = 1,2), (1.2)

which is a variant of Bell’s inequality and which is due to Clauser, Horne,
Shimony and Holt (CHSH) [27], namely

| {@1b1)LrT + (@2b1)LrT + (@2b2)LRT — {(@1b2)LRT | < 2. (1.3)

This inequality characterizes the restrictions imposed on the correlations be-
tween dichotomic variables of two distant observers within the framework of
any LRT. There are other, equivalent forms of Bell's inequality, one of which
was proposed by Wigner [28] and will be discussed in Chap. 3.

Quantum mechanical correlations can violate this inequality. For this pur-
pose let us consider, for example, the spin-entangled singlet state

) = —jg(u'lm— a ~| - al+1)s) , (14)

where | £+ 1) and | + 1) denote the eigenstates of the Pauli spin operators
ol and 0B, with eigenvalues +1. Quantum mechanically, the measurement
of the dichotomic polarization variables a; and b; is represented by the spin
operators 4; = a;-o® and b; = B,.08. (o4, for example, denotes the vector of
Pauli spin operators referring to observer A, i.e. o® = ):,._:z,y'z ole;, where
e; are the unit vectors.) The corresponding quantum mechanical correlations
entering the CHSH inequality (1.3) are given by

(@:bj)qu = Wlabdsly) = —a - B; . (L5)

Choosing the directions of the polarizations (ay,8,), (8, a2), (a2,8,) on
the Bloch sphere so that they involve an angle of /4 (see Fig. 1.1), one finds
a maximal violation of inequality (1.3), namely

] (dlgl)QM + (&251>QM + (&262)QM - (&152)QM l = 2\/5 > 2. (1.6)

Thus, for this entangled state, the quantum mechanical correlations between
the measurement results of the distant observers A and B are stronger than
any possible correlation within the framework of an LRT. Obviously, these
correlations are incompatible with the classical notions of reslity and local-
ity of any LRT. It is these peculiar quantum correlations originating from
entanglement which have been of central interest in research on the founda-
tions of quantum theory and which are also of central interest for quantum
information processing.
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So far, numerous experiments testing and supporting violations of Bell's
inequality [29-31] have been performed.? However, from a strictly logical
point of view, the results of all these experiments could still be explained
by an LRT, owing to two loopholes, namely the locality and the detection
loopholes. The locality loophole concerns violations of the crucial locality as-
sumption underlying the derivation of Bell’s inequality. According to this as-
sumption one has to ensure that any signaling between two distant observers
A and B is impossible. The recently performed experiment of G. Weihs et
al. {31] succeeded in fulfilling this locality requirement by choosing the sep-
aration between these observers to be sufficiently large. However, so far all
experiments have involved low detection efficiencies, so that in principle the
observed correlations which violate Bell’s inequality can still be explained by
an LRT [32,33). This latter detection loophole constitutes a major experi-
'mental challenge, and it is one of the current experimental aims to close both
the detection loophole and the locality loophole simultaneously [34-36].

The concepts of physical reality and locality which lead to inequality (1.3)
can also lead to logical contradictions with quantum theory which are not of
statistical origin. This becomes particularly apparent when one considers an
entangled three-particle state of the form

anz = 35(1 +Dal+ sl + Do = |- Dal= Vsl - Do), (17)

a so-called Greenberger—Horne—Zeilinger (GHZ) state [37]. Again | £ 1)a4,
| +1)p, and | + 1)¢c denote the eigenstates of the Pauli spin operators o2,
0B, and of, with eigenvalues +1. Similarly to Fig. 1.1, let us assume that
the polarization properties of this entangled quantum state are investigated
by three distant (space-like separated) observers A, B and C. Each of these
observers chooses his or her direction of polarization randomly along either
the z or the y axis.

What are the consequences an LRT would predict? As the three observers
are space-like separated, the locality assumption implies that a polarization
measurement by one of these observers cannot influence the results of the
other observers. Following the notation of Fig. 1.1, the possible results of the
polarization measurements of observers A, B and C along directions o, 3;
and -y, are a; = 1, b; = £1 and ¢ = *1. Let us now consider four pos-
sible coincidence measurements of these three distant observers, with results
(agy bz, €z), (@z,by,cy), (ay,bz,cy) and (ay, by, cz). As we are dealing with
dichotomic variables, within an LRT the product of all these measurement
results is always given by

Rppr = (a:bzcz)(a:cbycu)(aybxcu)(aybycx) = azbiciagbch, =1. (1.8)

What are the corresponding predictions of quantum theory? In quantum
theory the variables a;, b; and ci are replaced by the Pauli spin operators

2 For a comprehensive discussion of experiments performed before 1989, see [29].
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4; = a;-o?,bj = B;- 0P and & = v, - 0C. The GHZ state of (1.7) fulfills
the relations

d:b26: %) cuz = —|¥)cuz ,
a:by eyl ) ouz = ybeéyl)onz = dybyé:|¥)euz = |¥)cuz - (1.9)

Therefore the quantum mechanical result for the product of (1.8) is given by

RQMWJ)GHZ = (azazéz)(a:i’yéy)(aysxéy)(&ygyéz)lw)GHZ = (_I)W))((}HZ )
1.10

and contradicts the corresponding result of an LRT. These peculiar quantum
mechanical predictions have recently been observed experimentally {38]. The
entanglement inherent in these states offers interesting perspectives on the
possibility of distributing quantum information between three parties [39].

1.1.2 Characteristic Quantum Effects for Practical Purposes

According to a suggestion of Feynman [40], quantum systems are not only of
interest for their own sake but might also serve specific practical purposes.
Simple quantum systems may be used, for example, for simulating other, more
complicated quantum systems. This early suggestion of Feynman emphasizes
possible practical applications and thus indicates already a change in the
attitude towards characteristic quantum phenomena.

In the same spirit, but independently, Wiesner suggested in the 1960s the
use of nonorthogonal quantum states for the practical purpose of encoding
secret classical information [41].3 The security of such an encoding procedure
is based on a characteristic quantum phenomenon which does not involve en-
tangiement, namely the impossibility of copying (or cloning) nonorthogonal
quantum states [4]. This impossibility becomes apparent from the following
elementary consideration. Let us imagine a quantum process which is ca-
pable of copying two nonorthogonal quantum states, say |0) and |1), with
0 < |{0}1)] < 1. This process is assumed to perform the transformation

[0})|)a) — |0}{0}ao)
[Dipda) = [1)[1)]e1) (1.11)

where |p) represents the initial quantum state of the (empty) copy and
|a), lap), |a;) denote normalized quantum states of an ancilla system. This
ancilla system describes the internal states of the copying device. As this
copying process has to be unitary, it has to conserve the scalar product be-
tween the two input and the two output states. This implies the relation
(0]11)(1 — {0j1){agla1)) = 0. This equality can be fulfilled only if either states

3 Though this article was written in the 1960s, it was not published until 1983.
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|0) and |1} are orthogonal, i.e. (0|1) =0, or if (0|1) = 1 = (ao|a,). Both pos-
sibilities contradict the original assumption of nonorthogonal, nonidentical
initial states. Therefore a quantum process capable of copying nonorthogo-
nal quantum states is impossible. This is an early example of an impossible
quantum process.

Soon afterwards, Bennett and Brassard [42] proposed the first quan-
tum protocol (BB84) for secure transmission of a random, secret key using
nonorthogonal states of polarized photons for the encoding (see Table 1.1).
In the Vernam cipher, such a secret key is used for encoding and decoding
messages safely [6,43]. In this latter encoding procedure the message and
the secret key are added bit by bit, and in the decoding procedure they are
subtracted again. If the random key is secret, the safety of this protocol is
guaranteed provided the key is used only once, has the same length as the
message and is truly random [44]. Nonorthogonal quantum states can help in
transmitting such a random, secret key safely. For this purpose A(lice) sends
photons to B(ob) which are polarized randomly either horizontally (+1) or
vertically (—1) along two directions of polarization. It is convenient to choose
the magnitude of the angle between these two directions of polarization to be
/8. B(ob) also chooses his polarizers randomly to be polarized along these
directions. After A(lice) has sent all photons to B(ob), both communicate to
each other their choices of directions of polarization over a public channel.
However, the sent or measured polarizations of the photons are kept secret.
Whenever they chose the same direction (yes), their measured polarizations
are correlated perfectly and they keep the corresponding measured results
for their secret key. The other measurement results (no) cannot be used for
the key. Provided the transmission channel is ideal, A(lice) and B(ob) can
use part of the key for detecting a possible eavesdropper because in this case
some of the measurements are not correlated perfectly. In practice, however,
the transmission channel is not perfect and A(lice) and B(ob) have to process
their raw key further to extract from it a secret key [45]. It took some more

Table 1.1. Part of a possible idealized protocol for transmitting a secret key,
according to {42]

A(lice)’s direction 1 1(2j1}j1f2(1]2(f2(1}2]|--
A(lice)'s polarization 4+~ =1{4+1+ 1] +2 -1 1| —1|+1}.--
B(ob)’s direction ¢ 2j1]1|2f2|1]2|1|1]2

B(ob)’s measured polarization |[+1{—1{-1]-1+1{+1{—-1{+1{—1|+1] -
Public test of common direction{No|No|Yes{No|Yes|Yes|Yes{No|Yes|Yes|- - -
Secret key -1 +1{+1}-1 —1{+1}---

years to realize that an exchange of secret keys can be achieved with the
belp of entangled quantum states [46]. Thereby, the characteristic quantum
correlations of entangled states and the very fact that they are incompat-




