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Preface

To cultivate the science and technique personnel of high quality
for the 21th century, great efforts have been made to the teaching
reform in undergraduate courses and graduate courses in such aspects
as teaching contents, teaching methods, teaching means and the
coutrse features, etc., This is of great immediate significance to
carrying quality-education forward to the full. As one of the main
reform orientations, English teaching or bilingual teaching in
mathematics courses such as mathematical analysis has shown its
promising prospect. The enforcement of teaching material
construction is a current impending mission in implementation along
this line. The primary textbooks of mathematical analysis in western
countries are somewhat different in style, structure and layout as
compared ‘with that taught in our universities. The former tend to
develop the analysis theory in the setting of general metric space as
well as in Euclidean space. The primary goal of writing this book is to
match the content with the level accessible to gndergraduate students
in China,

Mathematical analysis is a fundamental subject facing all
branches of science which needs mathematics. It has its beginnings in
the rigorous formulation of calculus. Though the preliminaries of
mathematical analysis may date back hundred years ago, it remains a
classic study and a thorough treatment of the fundamentals of
calculus. As foundation of modern mathematics, mathematical
analysis is endowed with features of rigorous logicality and precise

description.



Mathematical analysis is the branch of mathematics most
explicitly concerned with the notion of a limit, either the limit of a
sequence or the limit of a function. This subject is usually studied in
the context of real numbers. However, it can also be defined and
studied in any space of mathematical objects that is equipped with a
definition of “closeness”-a topological space, or more specifically
“distance”-a metric space.

This book is intended to display the structure -of analysis as a
subject in its own right. The main objective of the text is to introduce
students to fundamental concepts and standard theorems of analysis
and to develop analytical techniques for attacking problems that arise
in mathematical theory and applications of mathematics. Due to
restriction of academic level and lack of experience, there may be
mistakes and neglects in this book. All comments and suggestions are
heartily welcome,

The publication of this book benefited from the financial support
of Shanghai Jiao Tong University Office of Academic Affairs, which 1
appreciate greatly. It is also pleasure to record thanks to Professor
Han Zhengzhi, Editors Chen Kejian and Dai Baicheng of Shanghai
Jiao Tong University Press for their valuable comments and
suggestions. Special thanks are due Editor Sun Qikun who carefully
read the entire manuscript and made technical modifications which led

to an improved layout of this book.
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Chapter 1 Real number system
and functions

Function is the most fundamental research object of mathematical
analysis, and functions and other concepts studied in our subject are
based on real numbers in some way, so we begin our study of analysis

with a discussion of the real number system and functions.
§ 1.1 Real number system

Most applications of mathematics use real numbers. For
purposes of such applications, it suffices to think of a real number as
a decimal. A rational number is one that may be written as a finite or

infinite repeating decimal, such as

2, —% ——1.75, 2.268 9, 2—30 ., |

An irrational number has an infinite decimal representation

whose digits form no repeating pattern, such as

J3 = 1.732050 808... , = = 3.141 592 653 5....

The rational numbers and irrational numbers together constitutes
the real numbers (real number system).

We have four infinite sets of familiar objects, in increasing order
of complication: '

N . the natural numbers are defined as the set {1, 2, ...,
Wslo s b5

7 . the integers are defined as the set {0, =+ 1, i L



8 Lk

Q : the rational numbers are defined as the set {p/q: p,q € 7,
qg# 0},

R : the set of real numbers (or the reals) is composed of the
rational numbers and the irrational numbers.

Remark (1) We have natural conclusions NCZCQCR,
where each inclusion is proper;

(2) The irrational number set is R \Q.

The real number line are often presented géometrically as points
on a line (called the real line or the real arxis). A point is selected to
represent 0 and another to represent 1, as shown in Figure 1 -1. This
choice determines the scale. Under an appropriate set of axioms for
Euclidean geometry, each point on the real line corresponds to one
and only one real number and, conversely, each real number is
represented by one and only one point on the line. Tt is customary to
refer to the point x rather than the point representing the real

number .

Figure 1 -1

Geometrically, the inequality << b means that either z equals &
or z lies to the left of b on the number line. The set of real numbers x
that satisfy the double inequality a < = <C b corresponds to the line
segment between a and b, including the endpoints. This set is
sometimes denoted by [a, ] and is called the closed interval from «
to b. If a and b are removed from the set, the set is written as (a, b)
and is called the open interval from a to . The notation (a, 67 and
[as b) ete. should be understood in'a similar way.

Theorem 1. 1.1 Given real number a and & such that a =L bi-le
for everye > 0. Thena < &.



Proof 1f o << a, takee = (a—56)/2. Then

bre=ptat-arbata_,

2 2

which yields a contradiction, []

Definition Let z,€ R. If 7, € (a, b), then (a, b) is called a
neighborhood of x,, denoted by U(xy), and (a, &) \ {x,} is called a
[freecenter neighborhood of z,, denoted by U°(z,). In particular, if
0 >0, then (xy— 8, xo+ &) is called a §-neighborhood of z,, denoted
by U(xos 8)» and (0 — 820 +8)\ {0} is called a freecenter &
neighborhood of x,, denoted by U°(x,, 8) (8§ may be called the radius
of the neighborhood) , 1i. e.

Ulzgs &) =z ||l x—x << 8}»

Ur(zo, 8) =z | O <| z— 2z |<< 8},
Properties of R = We summarize the following properties of & that we
work with.

Addition We can add and subtract real Jnumbers exactly as we
expect, and the usual rules of arithmetic hold-such results as z+y =
g = s o

Multiplication In the same way, multiplication and division
behave as we expect, and interact with addition and subtraction in the
usual way. So we have rules such asa(b-+c¢) = ab+ac. Note that we
can divide by any number except 0. We make no attempt to make
sense of a/0, even in the case when a« = 0, so for us 0/0 is
meaningless. Formally these two properties say that R constructs a
field algebraically, although it is not essential at this stage to know
the terminology.

Order As well as the algebraic properties, R has an ordering on
it, usually written as “a > 0” or “=". There are three parts to the

property:



@y Trichotomy For any a € R, exactly one of ¢ > 0, o — 0 or
a <0 holds, where we write ¢ <0 instead of the formally correct 0 >
a; in words, we are simply saying that a number is either positive,
negative or zero.

(2) Addition The order behaves as expected with respect to
addition: if a >0 and 5 > 0 then a+ 6>0; i.e. the sum of positives
is positive,

(3) Multiplication The order behaves as expected with respect
to multiplication: ifa > 0 and b > 0 then ab > 0; 1. e. the product of
positives is positive,

Now we extend the real number system by adjoining two “ideal
points” oo and —oo,

The symbols +co (“plus infinity”) and —co (“minus infinity”)
do not represent actual real numbers. Rather, they indicate that the
corresponding line segment extends infinitely far to the right or left,
The symbol co (“infinity”) usually designates either + oo or — oo,
An.inequality that describes such an infinite interval may be written
as [a, +o0), (=30, a), etc.

Definition By the extended real number system R* we shall
mean the set of real numbers R with two symbols + oo and — oo
which satisfy the following properties:

(1) Ifx € R, then we have -+ (4+-65) =400, 4 (—o0) =—oo0,

P (oo = oo, o (Comh mp b, S U, &

(2) If x>0, then we have z(4o0) = + o, z(—i00) =—o0,

(3) If #<C0, then we have x(4c0) =— oo, z(—00) =+ co,

(4) (+00) + (+00) = (+ c0) (- o0) = (—o0)(—0c0) =4 oo,
(—00) +(—00) = (+00)(—00) = (— co) (4o0) =—o00,

(3) If z € R, then we have — oo << 7 <4 oo,

Note (1) As defined above, we denote R =(—o0, +o0), the



set of real numbers, and R* =[—o0, #~oo], the set of extended real
numbers. The pgints in R are said to be finite to distinguish them
from the infinite points —oco and -+oo.

(2) For some of the later work concerned with limits, it is also
convenient to introduce the terminology: Every open interval (@, +o0) is
called a neighborhood of +-oo; every open interval (—oo, a) is called a
neighborhood of —oo.

Note that we writea =0 if either a >0 ora = 0. More generally,
we write a > b whenever a — b > 0.

Completion The set R has an additional property, which in
contrast is much more mysterious-it is complete. It is this property
that distinguishes it from @. Its effect is that there are always
“enough” numbers to do what we want. Thus there are enough to
solve any algebraic equation, even those like 22 = 2 which can’t be
solved in @. In fact there are ( uncountably many) more-all the
numbers like m, certainly not rational, but in fact not even an
algebraic number, are also in R.

Definition LetS Z R (S ).

(1) If there exists t € R suchl that z <t for any x € S, then S is
said to be bounded above and t is called an upper bound of S.

(2) Let ¢ be an upper bound of S. 1f t << d for any upper bound d
of S, then ¢ is called the least upper bound of S, which is denoted as
t=Lu.b. S.

For example, let S = {— “717

ave= 1y 25 } Then for any d €

[0, +oo), d is an upper bound of S, and L. u. b.S=0 & S. Let S=
(0, 17. Then for anyd € [1, +o), d is an upper bounds of S, and
Lab. 5=1¢€ 5.

The completeness axiom Let S&R (S ). I S is bounded

above, then there exists the least upper bound of S.

e G o



Definition The least upper bound of a number set S is also
called the supremum of S, denoted as sup S.

By the definition of the supremum, it is eaéy to check the
following;

Remark LetSC R (S &).

(1) If sup S exists, it is unique;

(2) The following two statements are equivalent.
(D t=sup S;
(D foranyx € S, z < t, and for any a << ¢ there exists x (S

such that x > qa.

n

n—+1
" Proof Clearly, for any + € S, » < 1.

Example ILetS = { n=il, 2 35 s } Then sup S = 1,

a
l1—a

Now, leta << 1. Takez = —2—, wheren = [ ]+ 1. Then
n—+1

€& S withz > a. Thus sup S=1. ]

Note If a number set S has no upper bound, denote sup S=oo0,

Definition LetSC R (S =# O&).

(1) If there exists € R such that = = 4 for any x& S, then S is
said to be bounded below, and b is called a lower bound of S

(2) Let & be a lower bound of S. If for any lower bound d of S,
b=d, then b is called the greatest lower bound of S, which is denoted
as b=g, l.b. S.

n =1, 2, ... }. Then for any d €

For example, let S = {%

(—o0, 0], d is a lower bound of S, and g Lb.S=0¢& S. LetS=
[1, 2). Then for any d € (—oo, 1], d is a lower bound of S, and
glb. S=1€S.

Theorem 1.1.2 Let SC R (S £ ). If S is bounded below,

then there exists the greatest lower bound of S.



Proof Let T={—xz |2 € S}. Then T is bounded above. By the
completeness axiom, there exists the least upper bound of T . Let
B=1L u. b. T. It is easy to check that —g=g.L.b. S.[]

Definition The greatest lower bound of a number set S is also
called the infimum of S, denoted as inf S.

By the definition of the infimum, it is easy to check the
following:

Remark Let ST R (S# ).

(1) If inf S exists, it is unique;

(2) The following two statements are equivalent:

(D) b=inf S;

(D for anyx € S, x>>b, and for any a > b there exists € S such
that z < a.

Note If a number set S has no lower bound, denote inf
S=—oco,

Definition Let S C R (S £ @). If there exists t € R such that
| z | <<t for any x€ S, then S is said to be bounded , and t is called a
bound of S; otherwise, S is said to be unbounded.

Clearly, S is bounded if and only if S'is both bounded above and
bounded below.

Definition Let SC R (S # ).

(1) If there exists a € S such that z == q for any x€ 'S, then « is
called the minimum of S, denoted as a=min S;

(2) U there exists 8 € S such thatx < gfor any x € S, then g is
called the mazimum of S, denoted as f~max S.

By the definitions of the minimum and the maximum of a number
set, it is routine to check the following:

Remark LetSC R (S# ).

(1) sup S=min{ y | =< y, V2 € S}; inf S=max{ y| x>y,

070
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(2) minS € Sand max S € S, but inf S or sup S may be not an
element of S,

(3) inf S € Sif and only if inf S=min S; sup S € S if and only
if sup S=max S.

Examples (DI&LS={nn11P=L2,m}.TMnme=

%ES&@SZI&Sm@SZ%wmmMS

1\t
@nﬂ&=ew+L%—

nzL&m}nmws:ﬂes,

supS=1¢ S, nomin S, no max S.

Theorem 1.1. 3 / LetA, BC R (A, B~ &). Then

(1) sup (A U B) =max{sup A, sup B};

(2) inf (A U B) =min{inf A, inf B).

Proof (1) If A or B has no upper bound, then A |J B has no
upper bound, and in this case, sup (A |J B) = +oco=max{sup A,
sup B}.

Now, we assume that both of A and B have upper bounds, For
anyx € A, x € AUB, and soz << sup (A U B). Thus, sup (A )
B) is an upper bound of A. By the definition of the supremum, we
have sup A<Csup (A U B) ; similarly, we have sup B< sup(A UB).
Hence, max{sup A, sup B} << sup (A U B). On the other hand, let
r€ AUB. Thenx € Aorzx € B; and SO x <<sup A or r <
sup B, i.e. = <X max{sup A, sup B}. Thus max{sup A, sup B} is an
upper bound of A J B. So, we see that sup (A U B) << max{sup A,
sup B};

(2) can be proved by an analogous argument. []

Example Let ACB(Z R) (A, B ). Then inf B<inf A<
sup A < sup B.

Proof Clearly, inf A < sup A. Note B = A U B. We have

-80



sup B=sup(AUB)=max{sup A, sup B}—=>sup A. Similarly, inf B<
inf A, and then the result follows.

Theorem 1. 1. 4 (Dedekind gap theorem) LetS, TCR(S, T#
&) such that x < yfor any z € S and any y € T . Then

(1) supS<Tinf T}

(2) Moreover, the following three assertions are equivalent:

(D) There exists uniquely ¢ € R such that s< c<(tfor any s € S
and any t € T;

(i) sup S=inf T}

For any ¢ > 0, there exist * € S 'and y € T such that
N — @i e, .

Proof (1) By the condition, for any y € T, y is an upper
bound of S, and so sup S<yforanyy € T. Thus, sup S is a lower
bound of T , which implies sup S < inf T.

(2) We first show (D& (D).

(D= (i): If sup S#inf T , by (1) we have supS<Cinf T, and so
there exist x, y € R such that sup S <z <y <linf T . Thus, there

exist two distinct numbers x and y such that s <X x <{tands <l y <<t

for any s € S and any ¢t € T, which yields a contradiction.
(iD= (D: Let ¢ : = sup S=inf T. Clearly, s<{c< tfor any s €

S and any ¢t € T. We further show such number ¢ is unique. Assume
that there exists d € R such that s<Cd <tfor any s € S and any ¢t €
T. Then, sup.S<d<inf T , and so d=sup S=inf T , i.e. d =c.

Now, we show (iD= (iD.

(D= (i): Note that for any e > 0, sup S — % is not an upper

bound of S and inf T + —g— is not a lower bound of T. Thus, there

09-



