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Preface

The first SKLOIS Conference on Information Security and Cryptography
(CISC’05) was organized by the State Key Laboratory of Information Security
(SKLOIS) of the Chinese Academy of Sciences. It was held in Beijing, China in
December 15~17, 2005, and was sponsored by the Institute of Software, the Chinese
Academy of Science, the Graduate School of the Chinese Academy of Science, and
the National Science Foundations of China.

The international program committee of the conference received a total of 196
submissions (from 21 countries and regions). Each submission was reviewed by
around 3 reviewers. Based on the review comments, 33 submissions were selected
for presentation as regular papers which are published by Springer in the series of
Lectures Notes in Computer Science, and another 32 were selected as short papers
which are published in this proceedings. Note that due to the time constraint for pa-
per review, and room limitations for the conference proceedings, many good papers
have regrettably been rejected.

Many people and organizations helped in making the conference a reality. We
would like to take this opportunity to thank the program committee members and
the external experts for their invaluable help in producing the conference program.
We thank the various sponsors and, last but not the least, we wish to thank all the
authors who submitted papers to the conference, the invited speakers, the session
chairs and all the conference attendees.

Finally we would like to note that the SKLOIS Conference on Information Secu-
rity and Cryptology will be organized annually. We look forward to the continuous
support by all the authors, reviewers, sponsors and organizers.
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On the Hidden Number Problem over any Finite
Fields of Large Characteristics*

Kewei Lii, Kunpeng Wang, and Bao Li

State Key Laboratory of Information Security,
Graduate University of Chinese Academy of Sciences,
P.O.Box 4588, Beijing 100049, China
conwaylu@tom.com

Abstract. In this paper, making use of the least significant bit and the most
significant bits, we study Diffie-Hellman problem over any finite field of large
characteristics and prove that hidden number problem with chosen multi-
plier is as hard as computational Diffie-Hellman problem. Furthermore, we
prove the similar results of elliptic curve over any finite field and analyze bit
security of tripartite Diffie-Hellman key exchange protocol.

Chinese Subject Classifications code: TP309
Keywords: least (most) significant bit, elliptic curve, Weil pairing

1 Introduction

Discrete logarithm problem (DLP) relative to a base g € Z, is to find z given
g%. Assuming this problem to be hard, we recall that Diffie-Hellman key exchange
scheme works in the finite cyclic group ¢ =< g >< Z; of order T. To establish
a common key, two communicating parties, Alice and Bob execute the following
protocol [12]: Alice chooses a random integer « € [1, T — 1], computes and sends
X = g% to Bob. Bob chooses a random integer y € [1, T — 1], computes and sends
Y = g¥ to Alice. Now both Alice and Bob can compute the common Diffie-Hellman
secretK = Y* = XV = ¢g*¥, Many believe that computing Diffie-Hellman function
DHy (g%, g¥) = ¢*Y is as hard as DLP. After the secret key agreement, Alice and Bob
can secure the session using encryption with a block cipher. A natural way to derive
the key for the cipher would be to use a block of bits from g%Y. For example, if p is
1024 bit prime, one may use the 64 bit most significant bits of g™¥. An attacker, who
may not be able to compute the whole g*¥, may nevertheless succeed in computing
this part of the bits of g®¥ and crack the session. Hence it is important to know if
the most significant bits (MSB) of g*¥ are secure from an adversary who knows both
g® and g¥. Boneh and Venkatesan [4] prove that computing the most significant bits
of the secret key in a Diffie-Hellman key-exchange protocol from the public keys of
the players is as hard as computing the secret key itself, by studying the following
hidden number problem: Given an oracle O,, (z) that on input z computes the k& most
significant bits of ag® mod p, find oo mod p.

* Supported by President’s Foundation of Graduate University of CAS (yzjj2003010).
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On the other hand, the computational Diffie-Hellman assumption (CDH) in
group G states that no efficient algorithm can compute g*¥ given g, g*, g¥. But
this does not mean that one cannot compute a few bits of g*¥ or perhaps predict
some bits of g*¥. In fact, to use the Diffie-Hellman protocol in an efficient system
one can usually relies on stronger Decisional Diffie-Hellman assumption (DDH)[2].
Ideally, one would like to show than an algorithm for DDH in group G implies an
algorithm for CDH in G. As a first step, Boneh and Shparlinski [3] show that, in the
group of points of an elliptic curve over a finite field, predicting the least significant
bit (LSB) of the Diffie-Hellman secret, for many curves in a family of curves, is as
hard as computing the entire secret. The similar results were previously known for
the RSA function [1] but not for Diffie-Hellman. Most of all work is based on the
field Z,, for a sufficient large prime p.

As applications, a number of cryptographic schemes proposed are related to or

based on Diffie-Hellman function DH,4(g%, g¥) = ¢®¥. They depend on the “hid-
den” nature of g*¥. For examples, we refer to ElGamal’s public key cryptosystem
[5], Shamir’s message passing scheme (6], Bellare-Micali non-interactive oblivious
transfer [9] and Okamoto conference key sharing scheme [10], etc.
Contribution. Making use of the least significant bit and the most significant bits,
we first study the Diffie-Hellman (DH) problem over a general finite field of large
characteristics and prove that the hidden number problem with chosen multiplier
(HNP-CM) is as hard as computational DH problem. Then we prove the same results
of the elliptic curve over the general finite field and analyze the bit security of
tripartite DH key exchange protocol.

2 Hidden number problem with trace

2.1 On the most significant bits

Let p be a sufficient large prime, |s|, denote the remainder of an integer s on
division by p and [logz] be the length of z in binary. We use x mod p to denote
unique integer a in the range [0, p — 1] satisfying z = a (mod p). Let F, = Z, be a
finite field of p elements and Fpm be the finite extension of F. For an integer z, we
define ||z, = mingez |z — ap| and for a given k > 0, denote by MSBg ,() as the
integer u, 0 < u < p — 1, such that ||z — ul|, < 5&+. Roughly speaking, a value of
MSBy, »() gives the k most significant bits of the residue of x modulo p. We denote
by Tr(z) = Y75" 27" and Nm(z) = [1725} 27" the trace and norm of z € Fpm to Fy
respectively.

HNP-MSB The MSB hidden number problem with trace over a subgroup
G CFym can be formulated as follows: Given r elements t1,--- ,t, € G, chosen
independently and uniformly at random, the values MSBy ,(Tr(at;)) fori=1,---,r
and some k > 0, recover the number o € Fym.

The case of m = 1 and G =F;, corresponds to the hidden number problem in-
troduced in [4], and for the case G CF} see [7]. The case of m > 2 is more difficult
because one of the crucial ingredients, a bound on exponential sums with elements
of small subgroups of Fpm, is missing. nevertheless in some special cases results of a
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comparable strength have been obtained in [8]. In other cases, an alternative method
from [11] can be used, leading to weaker results. n

We denote by N the set of z € Fym with norm equal to 1, thus [N =%_;11. The
following statement a partial case of Theorem 2 of [8].

Lemma 1. Let p be a sufficiently large prime and G be a subgroup of N of order
L with I > pm=Y/24r for some fized p > 0. Then for k = [2v/Togp] and r =
[4(m + 1)V/Togp], there is a deterministic polynomial time algorithm A as follows.

For any o € Fym, if t1,--- ,t, are chosen uniformly and independently at random
from G and if w; = MSBy p,(Tr(at;)) for i = 1,--- 7, the output of A on the 2r
values (ti,u;) satisfies Pry, ... s eglA(tr, - triur, - ,un) =a] >1—p~L,

For smaller groups, a weaker result is given by Theorem 1 of [11].

Lemma 2. Let p be a sufficiently large prime and G be a subgroup of Fym of prime
order | withl > p for some fized p > 0. Then for anye >0, let k = [(1 - Z +¢)logp]
and v = [4m/e], there is a deterministic polynomial time algorithm A as follows.

For any a € Fym, if t1,--- ,t, are chosen uniformly and independently at random
from G and if ui = MSBy p(Tr{(at;)) for i = 1,---,r, the output of A on the 2r
values (t;,u;) satisfies Pry, ... 4 ec[A(t1, - ,tr;uq,--- Jury=a)>1—-p™,

Here we can give a generalization of Lemma 1. We first generalize the HNP-
MSB problem to be MSB? hidden number problem (HNP-MSB¢9). HNP-MSB¢
with trace over a subgroup G CF can be defined as follows: Given r elements
ti,---,tr € G, chosen independently and uniformly at random, and the values
MSBy p(Tr(atd)) fori=1,---,r, somek >0 and integer d > 0, recover the number
a € Fym. Obviously, when d = 1, it is HNP-MSB. We define Ouse! to be an oracle
for MSBy, ,(Tx(t)) for any t.

Lemma 3. Let p be a sufficiently large prime and G be a subgroup of N of order
U with I > p{m=D/240 for some fized p > 0. Then for k = [2y/logp] and r =
[4(m + 1)/logp], given an oracle O, , there is a deterministic polynomial time
algorithm APusst for HNP-MSB¢ as follows. For any o € Fym, if t1,--- ,t, are
chosen uniformly and independently at random from G and make r calls to O, ,
the output of ACmse* on the r values t; satisfies

1 1
Proo,.teglAOemt (b, s tr) =a] 2 Z(L=p™) + (1= )™,

where e = ged(d, ).

Proof. Set u®(X) := MSB{ ,(Tr(a))) := MSBg ,(Tr(ar?)). Let R : G — F} be a
random function chosen uniformly from the set of all functions from g to F;, and
S : G — G be a function satisfying S(A)¢ = A (mod p™). Here G¢ is the set of d’th
powers in G. The function S is simply a function mapping a d’th power z € G2 to a
randomly chosen d’th root of z. Next, define the following function MSBg, ,(Tr(a))):

u?(S(N)), if A € g4;

u(A) = MSBy p(Tr(a)) = {R()\), otherwise.
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If ged(d,l) = 1, then G¢ = G. Choose t1,--- ,t, uniformly and independently at

random from G, then ¢} = t¢,--- ,#. = t2 is also distributed uniformly and indepen-
dently in G. Calling the oracle Oygp1 on t;, we get ud == ud(t}), -+, ud := ui(t)).
For the pairs (), u), ---, (t., u?), by Lemma 1, there is a deterministic polynomial

time algorithm B such that
Pre,,... ,tTEQ[B(tllv T 7t/r; u(117 T 7ug) = Ot] >1 _p_l .

Now we define a algorithm A®wss! to call the oracle Oygp and algorithm B, then
AOwmsst (ty, - t,) = B(ty, - ,th;ud, - ,ul). So A%wmss! is a deterministic polyno-
mial time algorithm satisfying

Prh,.,.,treg[AoMSBl (t1,-,tr) =0} >1— p 1.

If ged(d, 1) = e > 1, then G¢ = G® and |G| = % Similar to the above, we have a
algorithm A®mss! such that

Prtly“' ’t{EQ[AOMSBl (tlv e 7t7‘) = a] = e—l"Prtu“wtrEg[B(tilv e 1t:'; ’U,(f, T Ug = a]
+(1 = F)Pryy g B, oty uf) =0l 2 (L —pTH) + (L= )™

This completes the proof. O

2.2 On the least significant bit

We denote by LSB(z) the least significant bit of an integer 2 > 0. When z € Fp, we
let LSB(z) be LSB(z) for the unique integer = € [0, p — 1] such that = = z mod p.
Now we define the following variant of the Hidden Number Problem (HNP) presented
in [4].

HNP-CM¢: Fix an integer d > 0 and an ¢ > 0. Let p be a prime. For an a € F},
let L(9): F3 — {0, 1} be a function satisfying

Precr; (L@(t) = LSB(lat?],)] > 5 +¢ . %)

The HNP-CM¢ problem is: Given an oracle for L(¥(t), find a in polynomial time.
For small ¢ there might be multiple o satisfying condition (*) (polynomially many
in e7!). In this case the list-HNP-CM¢ problem is to find all such that a € Fy.
Note that it is easy to verify that a given o belongs to the list of solutions by
picking polynomially many random samples = € Fp (say, O(1/€?) samples suffice)
and testing that L(¥(z) = LSB(laz?|,) holds sufficiently often. We usually set
d =1, 2 or 3. We refer to the above problem as HNP-CM¢? to denote the fact that
we are free to evaluate L(?(t) at any multiplier ¢ of our choice (the CM stands for
Chosen Multiplier). When d = 1, it is the well-known algorithm (ACGS algorithm)
due to Alexi, Chor, Goldreich, and Schnorr [1]. In the original HNP studies in 4]
one is only given samples (¢, L(t) = L(t)) for random ¢. The following result shows
how to solve the HNP-CM?¢ problem for any ¢ > 0. The proof of it can be found
in [1] and [3].
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Lemma 4. Fized an integer d > 0. Let p be a n-bit prime and let € > 0. Then given
¢, the HNP-CM? problem can be solved in expected polynomial time in logp and
d/e.

Notice. In particularly, in the following we usually set & = MSBy, ,(Tr(ut;)).

3 Security of bits of Diffie-Hellman scheme over a finite field

In this section, we make use of solutions, as shown in the preceding, to HNP of the
most significant bits and the least significant bit respectively to prove that predicting
the LSB of Diffie-Hellman secret is as hard as solving computational Diffie-Hellman
problem. The following result show us that predicting LSB is not easier than trying
to find MSB. We define OF to be an oracle for L(V(t) := L(t).

Theorem 1. Given oracle OF and a sufficient large prime p. Then, given € > 0,
HNP-MSB can be solved in expected polynomial time m - T(logp, é), where T is a
fized polynomial and m is the degree of extension of finite fields as above.

Proof. For a € Fym, we choose independently and uniformly at random r elements
t1, -+, tr € G. By Lemma 1, if we find the values u; = MSBy ,(Tr(at;)) for
t =1, ---, r and some k > 0, then we can recover the number o € Fim by a
deterministic polynomial time algorithm A4, such that

Prtl;"',treg[A(th' oy tesug, e au’l‘) = a] 21 —p_l .

So we get the result.

Now we try to determine u; for s = 1,--- ,r. By the definition, we know that
0<wu; <p-—1. For any i and any ¢ € F;, we do with L(t) = LSB(|u;t|,). Making
use of the ACGS algorithm (the case d = 1 of Lemma 3 ) and oracle OF, u; could be
found in expected polynomial time in n = logp and % After repeating the procedure
r times, we could find uy,--- ,u, in expected polynomial time 7" (n, é) for a fixed
polynomial 7. This completes the proof. O

In the following, given (g, g%, g¥), we show that if there is an efficient algorithm for
predicting the LSB of Tr(g2®)t for t € F, then there is an algorithm for computing
the Diffie-Hellman function, i.e., finding ¢2°.

Corollary 1. Given (g,g%,gY¥) for g € Fim, if there is an efficient algorithm for
predicting LSB(Tr{(g®)t) for t € F;, then there is an algorithm for computing the
Diffie-Hellman function, i.e., finding g in expected polynomial time.

Proof. 1t is easily to get the result by Theorem 3.1. O

Remark 1. For smaller group, by Lemma 2, we can get similar results. these results
also show that solving the hidden number problem with chosen multiplier (HNP-
CM) is as hard as computing DH function. Furthermore, we know that if computing
DH function is hard, then the least significant bits are unpredictable.
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4 Security of bits of elliptic curve Diffie-Hellman scheme

In this section, we discuss the relations between Diffie-Hellman problem and LSB
over elliptic curves. Let E be an elliptic curve over finite field Fpm of size p™, which
is the finite extension of F,, given by an affine Weierstrass equation of the form

Y2=X34+AX +B, 4A3427B%2#0. (4.1)

It is well known that the set E(Fpm) of Fym-rational points of E form an Abelian
group under an appropriate composition rule and with the point at infinity O as the
neutral element.

Let G € E be a point of order g for some prime g. Then the common key
established at the end of the Diffie-Hellman protocol with respect to the curve E
and the point G is abG = (z, y) € E for some integers a,b € [1, ¢ —1]. Throughout
the rest, we use the fact that the representation of E contains the field of definition
of E. With the convention, an algorithm given the representation of E/F,= as input
does not need to also be given p™ and p. The algorithm obtains p™ and p from the
representation of E.

Diffie-Hellman Function: Let E be an elliptic curve over Fym and let G € E be a
point of prime order g. We define Diffie-Hellman function as: DHg,g (aG, bG) = abG,
where a, b are integers in [1, ¢ — 1]. The Diffie-Hellman problem on E is to compute
DHg (P, Q) given E, P, G and Q. Usually, we mostly focus on curves in which
Diffie-Hellman problem is believed to be hard. Throughout we say that a randomized
algorithm A computes the Diffie-Hellman function if A(E, G, aG, bG) = abG holds
with probability at least 1 — 1/p™. The probability is over the random bits used by
A.

Twists on elliptic curves: Let G be a subgroup of Fpm with |G| > p? for p > 0. For
any X € G, define ¢, (E) to be the twisted elliptic curve: '

Y2 = X3+ AMNX + BX6,  4(AN)® +27(BXS)2 #£0 . (4.2)

Hence, ¢»(E) is an elliptic curve for any AeG. Throughout this section, we are
working with the family of curves {¢x(Eo)}reg associated with a given curve Eo.
It is easy to verify that for any point P = (z,y)€E and any A€EG the point Py=
(zA2,yA3) € ¢A(E) (see [3]). Moreover, for any points P,Q,R € E with P+Q=
R we also have Py + Qa=R,. In particular, for any GEE we have: 2GA=(zG),
yGa=(yG)a, zyGr=(zyG)x. So map ¢y : E— ¢ (E) mapping PeE to Pyedx(E).
Indeed, it is easy to verify that ¢x is an isomorphism of groups. So we also have
DHy, (E),G, (Px, @2)=¢x[DHE 6 (P, Q)), i.e. if the Diffie-Hellman function is hard to
compute in E then it is also hard to compute for all curves in {&r(E)}reg-

For any z € Fp, we let LSB(z) be LSB(z) for the unique integer z € [0, p—1]
such that ¢ = z mod p. We say that an algorithm A has advantage € in predicting
the LSB of the trace of the z-coordinate of the Diffie-Hellman function on E if:

1
Adv ;(A) = |Prob, s[A(E, G,aG,bG) = LSB(MSBy »(Tr(z)))] — 5| >e€,

where abG = (z, y) € E, k = [2//logp] and a, b are chosen uniformly at random in
[1, g—1]. We write Advé,G(A) > . Similarly, we say that algorithm A has advantage



