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PREFACE

The rapid development of contemporary technology requires ever more
extensive mathematical preparation for engineers. This has resulted in a
demand for a more complete exposition of the applications of the fundamen-
tal mathematical disciplines for engineers, technicians, and students in
technological institutions.

The present book examines a number of physical and technical prob-
lems which involve second-order partial differential equations. Consider-
able attention is also given to the theory of such equations. In addition, the
text includes several chapters and sections of a general nature (indicated
by an asterisk). The material in these sections does not as yet have direct
application; nonetheless, it is important for an understanding of contem-
porary scientific literature on mathematical physics.

Among the applications studied are the vibrations of strings, mem-
branes, and shafts; electric oscillations in lines; the electrostatic prob-
lem; the basic gravimetric problem; the emission of electromagnetic
waves and their distribution along wave guides and in horns; the emission
and dispersion of sound; gravity waves on the surface of a liquid; heat flow
in a solid body, and so forth. Solutions are given to both very simple and
more complicated problems, making it possible for the reader to master
the methods considered in the book and also the physics of the phenomena
in question. In almost every chapter, there are problems whose basic pur-
pose is to develop the reader's technical skill.

Approximate methods for solving problems in mathematical physics
are not discussed, since their exposition would require a considerable in-
crease in the size of the book. Also excluded are certain specialized prob-
lems (for example, those associated with the physics of atomic reactors)
that have arisen only in the last few years.

The preparation of the book was carried out under the guidance and
with the cooperation of Member-Correspondent of the Academy of Sciences
of the USSR, Professor Nikolai Sergeevich Koshlyakov, whose untimely
death occurred before publication of the book. A noted specialist in the field
of analytic number theory and higher transcendental functions, Prof.
Koshlyakov published a number of works in the field of mathematical phys-

-dcs.| In the course of his career, which included more than 30 years of
scientific and pedagogical activity, as well as 15 years of research in ap-
plied problems, Prof. Koshlyakov always devoted a great deal of attention
to the mathematical education of engineers. An excellent lecturer and
teacher, he enjoyed the constant respect and devotion of his listeners and
students. His textbook Osnovnye Differentsial'nye Uravneniya Matemati-
cheskoi Fiziki (Basic Differential Equations of Mathematical Physics),
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several chapters of which are used in the present book, has seen four edi-
tions (the latest in 1936).

The authors of the Introduction and Parts I and III are N. S. Koshlyakov
and M. M. Smirnov; the authors of parts Il and IV are N.S. Koshlyakov and
E. B. Gliner.

We take this occasion to express our deep gratitude to I. M. Gel'fand,
G.I. Zel'tser and G. P.Samosyuk for graciously reading the individual sec-
tions of the book, to G. Yu.Dzhanelidze and S.I. Amosov for making a tho-
rough review of the manuscript, and especially to Scientific Instructor G.P.
Akilov. All of these made a number of valuable comments leading to an im-
provement in the text and to the correction of a number of errors.

Leningrad, September 5, 1951 E. B. Gliner
M. M. Smirnov
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INTRODUCTION

1. The fundamental differential equations of mathematical physics

Many problems in mechanics and physics involve the sfudy of second-
order partial differential equations. The following are some examples:
(1) The study of various types of waves - elastic, acoustic, and electro-
magnetic — and of other oscillational phenomena leads to the wave equation

0% _ g0k ok ok "
at2 ax2 ay2 322
where c is the velocity of propagation of the wave in the given medium.
(2) The processes of heat flow in a homogeneous isotropic body and other
diffusion phenomena are described by the heat-flow equation :

ou 02u 22u 32
a—t-az(ﬁ+gz+a—z—2). (2)
(3) Study of a steady thermal state in a homogeneous isotropic body leads to
Poisson's equation:
32u  22u 22
dx2 ay2 922
In the absence of internal heat sources, eq. (3) becomes Laplace's equation
&‘ + &u + 32 =0. (4)
ax2 992 pz2 :
The potentials of a gravitational or of a constant electric field in which
there are no masses or electric charges also satisfy Laplace's equation.
Equations (1) - (4) are often called ‘the fundamental equations of mathe-
matical physics. A detailed study of these equations makes possible the
theoretical treatment of a large number of physical phenomena and the so-
lution of many physical and technical problems. .
Each of egs. (1) -(4) has an infinite number of particular solutions. In
solving a specific physical problem, it is necessary to choose from among
these solutions the one that satisfies certain additional conditions imposed
by the physical situation. Thus, problems in mathematical physics reduce
to finding solutions to partial differential equations that satisfy certain ad-
dilional conditions. The most common of these additional conditions are the
so-called boundary conditions (conditions that must be satisfied at the boun-
dary of the medium in question) and initial conditions (which must be satis-
fied at the particular instant of time at which consideration of a physical
process begins).
Let us note one very important point. A problem in mathematical phys-

¥ 'f(x’y’z) . (3)
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ics is considered to be stated correctly if the problem has exactly one sta-
ble solution satisfying all the conditions. By "stable', we mean that small
changes in any of the given conditions of the problem must cause a corre-
spondingly small change in the solution. The existence and uniqueness re-
quirement means that among the given conditions there are none that are
incompatible and that these conditions are sufficient to determine a unique
solution. The stability requirement is necessary for the following reason.
In the given conditions for a specific problem, especially if they are ob-
tained from experiment, there is always some error, and it is necessary
that a small error in the given conditions causes only a small inaccuracy in
the solution. This requirement expresses the physical determinacy of the
stated problem.

Determining whether a problem in mathematical physics is stated cor-
rectly is a very important and at the same time extremely difficult question
in the theory of partial differential equations. We shall not make a complete
study of this question in the present book.

The following three sections are devoted to the classification of sec-
ond-order equations of the form

ou ou
Z AZ] (xl 9o xn)

22
l]—l . W'f F(xlyc.-;xn,u,'a_xi,-..,éx— =0,

and, in the case of two independent variables, to their reduction to canoni-

cal form. v TS%,

2. The reduction of second-order equations to canonical form

Let us examine a second-order equation with two independent variables
that is linear with respect to the second-order derivatives:
82u 2% 32u

Aa—x2 ZBaxay+Ca 2+F(x,y,

ou au) S, (5)

U, %’ 55
where A, B, and C are functions of x and y that have continuous derivatives
up to the second order.

Let us replace x and y by the new independent variables £ and 1. Sup-
pose that

£ =01(x,9) , 7n=03(x,)) (6)
are twice continuously differentiable functions and that the Jacobian
991 o1

1,09 |3x 2y
2c,3) | d0g d0g
ox 0y

#0 (7

throughout the region in yuestion.

The derivatives with respect to the old variables are expressed in
terms of the derivatives with respect to the new variables according to the
formulae
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o _wdE wdn  dw_mdk oudn
9x  9Edx omox’ y 303y  omay’
0%

azu_a?»u(g_g)2+23 a_ga_n+_2u(an2+a_ua_2_g+au32n
ax2 9£2 \ox 0& 9n ox ox

2
&u_&(a_e%zﬁga_m&(m%y&ﬂ&
ayz—aez ay. 9§ on 9y oy 2 \dy o ayZ an ayZ’

2
0% _d%uptas 0% (agom agomy oZomem ou 02 ou o%

3
an2 \ox. 9t 9x2  om ax2’

!

(8)

0x 9y 0£20x 9y 9€am \ax dy dy ax/  on2ax dy | € 9x 0y | om ox By

When we substitute the values of the derivatives in (8) into eq. (5) we obtain

32u 22u 3% du duy _
Z(e,n) a—§2 + 23(5;") ém T C‘(E’T’)Eﬁ +'F (e?n’u)'a—g’ﬁ) =0 ) (9)

where

" _ L (38\2 3t 3¢ 3£\2
A(g,n) —A(a +2355§+C a—y—) ’

B =4 0€0m 9§ an 3¢ on %€ an
B(g’n)”AaxaxJ’B xay+ayax +Cayay’ (10)

o _a(23m\2 an on )2
C(g,n)-A(ax +233x@+c(—a§

By a direct substitution, we can easily verify that

2
B2 _ AC - (B2- 9 om 3¢ an
B2 - AC = (82-40) (52 57 - 52 32 (1)
In the transformation (6), the two functions ¢1(x,y) and 0a(x,y) are at
our disposal. Let us show that it is possible to choose them so that only one
of the following conditions will be satisfied:

1)A=0,C=0, 2A=0,B=0, 3)A=C, B=0.

Then, obviously, the transformed equation (9) will take the simplest form.
Let us examine the first-order differential equation

2 2
A(%% +ng%g—‘;+c(gi; =0. (12)

We must examine separately the cases B2 - AC > 0, B2 - AC< 0, and
B2 - AC = 0 throughout the entire region. The case in which the expression
B2 - AC changes sign in the region will be examined later.

CASE I: B2 - AC greater than zero. In this case, eq. (5) is said to be
of the hyperbolic type. We may assume that either A + 0 or C # 0. We shall
examine separately the case when A = C = 0. Without loss of generality, we
may assume that A # 0 everywhere. Then, eg. (12) may be written in the
form
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‘A %, (8 +./B2-AC) %} [A %, (8- /B2-40) g% =0

This equation can be separated into two equations:

A %‘; + (B +J/B2Z-AC) gl’ -0, (12a)
% +(B-/B2-A0) 2 a¢ =0*, (12b)

Consequently, ‘the solutions of each of egs. (12a) and (12b) will be solutions
of eq. (12).

To integrate eqs. (12a) and (12b), we set up corresponding systems of
differential equations

dx dy dx dy

A B+JB2-AC’ A B-JB2-AC’

< Ady- (B+J/B2-AC)dx =0,
Ady-(B-JB2-AC)dx=0. o
We note that eqs. (13) may be written in the form of a single equation
Ady2 - 2Bdxdy+ Cdx2=0. (13a)
Suppose that
01, y) = constant,  @y(x,y) = constant (14)

are solutions of eq. (13). Then, as we know, their left members will be so-
lutions of eqs. (12a) and (12b) and hence of eq. (12).

The curves representing (14) are called the characteristic curves or
simply the characteristics of eq. (5), and eq. (12) is called the equation of
the characteristics.

For an equation of the hyperbolic type (B2 - AC > 0), the solutions (14)
will be real and distinct. Here, we have two distinct families of real char-
acteristics.

In eq. (6), let us set

€ =¢1(x1y) 3 "7 =‘p2(x’y) b

where ¢1(x,¥) and pa(x,y) are solutions of eq. (12). Then, on the basis of
(10), A =C =0 in eq. (9). The coefficient B is everywhere different from
zero in the region in question — a consequence of (7) and (11). Dividing eq.
(9) by the coefficient 2B # 0, we reduce it to the form

azu ou ou
TRk (€., SFre an)

This is the canonical form of an equation of the hyperbolic type.
IfA =C =0, eq. (5) is of the hyperbolic type and is already in canoni-
cal form.

(15)
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If eq. (5) is linear with respect to the first-order derivatives and to the
function « itself, the transformed equation will also be linear:

agzgn +ale,n 55 ag * b(ﬁm) + c(&,n) u = flg,n) . (16)

Setting
E=p+v, nNn=p-v,

we reduce eq. (15) to the form

0% 2% ot 0, 2 2
w2 g2 T Vit ai)

This is the second canonical form of an equation of the hyperbolic type.

CASE II: Suppose that B2_-4AC=0 throughout the region in question. In
this case, eq. (5) is of the parabolic type. We shall assume that throughout
the region the coefficients in eq. (5) do not vanish simultaneously. The con-
dition that B2 - AC =0 implies that at every point of this region one of the
coefficients A and C is different from zero. Without loss of generality, we
may assume that A is everywhere different from zero. Then, eqs. (12a) and
(12b) are identical and take the form

) 99 _
A ax + B 3y =0. (17)
It is easy to see that every solution of eq. (17), where B2 - AC = 0, also
satisfies the equation

a¢ Ao _
X 1
B +C 3y =0 (18)
We note that for an equation of the parabolic type the solutions (14) co-
incide, and we have only one family of real characteristics ¢1(x, y) = const.
Let us set

£= (Dl(x’ y)

where ¢1(x, y) is a solution of eq. (17). For ¢3(x, ), let us take any function
such that the Jacobian 9(p1,¢2)/3(x,y) # 0. Since A is different from zero
and, consequently, d¢1/0y is different from zero, we may take o3 = x. Then,
on the basis of (10), A is identically equal to zero in eq. (9) and the coeffi-
cient of 92u/3£ a7 is of the following form:

Be (ol va 2 B, %01, o1
3 x T \B o :
According to (17) and (18), B is identically equal to zero in the region in
question. The coefficient C in eq. (9) is transformed to the form

1 (A e 94 2) ,

and hence C # 0, because otherwise, on the basis of eq. (17), the Jaco-
bian a(<p1,<p2)/8(x ) would vanish. Dividing eq. (9) by C # 0, we reduce itto
the form
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azu

an2
This is the canonical form of an equation of the parabolic type.
If eq. (5) is linear, eq. (19) will also be linear:

ou ou
=4 0 (5 %, 5E v om (19)

22u ou du :
o +ay(€,m) ¢ + 01(8,m) 3, + c1(€,m) u = f1(€,n) . (20)

CASE.IIl. Suppose that B2_-AC<0 throughout the region in question.
Eq. (5) is then said to be of the elliptic type *. It is easy to see that in this
case the solutions (14) will be complex-conjugate and we shall not have real
characteristics.
Let us set
£+in=01(x,9), £-in=93x,9),

where @] and g are complex-conjugate functions satisfying eq. (12).
Making the substitution ¢1(x,y) = £ +in in eq. (12), we obtain
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Setting the real and imaginary parts of this identity equal to zero, we obtain
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Hence, it follows on the basis of (10) that
A=C T alB=0
and, after division by 4 # 0, eq. (9) takes the form
22 a?»u du du
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This is the canonical form of an equation of the elliptic type.
If eq. (5) is linear, eq. (21) will also be linear:
32 32
Ez 2 + ag(i,n) ag +by(g, fl) + col&,mu = fol&,n) . (22)
Example. Let us consider the equation
x2&‘-y2&=o (x>0, y>0). (23)

x> 9y2

* In the reduction of equations of the elliptic type to canonical form, we shall confine
ourselves to analytic coefficients A, B, and C. Thus, we shall be able to find the
solution to eqs. (12a) and (12b) in the form of an analytic function.



