Imperfect C++

Practical Solutions for
Real-Life Programming

[£] Matthew Wilson & .

Imperfect

N\ BCHBHRL i gt

POSTS & TELECOM PRESS

AN

e 2 A N S % N ~ 5 > > LS 4 s - i - . i - - 9 - \ P S = 4 Sead -. \
g*@,*amﬂ\ 4 o A s BN i S i T e VI i ST i R g LN o WD o 05 i NSRBI o SR 82 w5 P — — P — — — — -

SRR FE

Imperfect C++

(Z3ThiR)

Imperfect C++: Practical Solutions for Real-Life Programming

[3¢] Matthew Wilson

NN

PHEREE (CIP) Bl

56X M) C++=Imperfect C++/ (3£) 4E/Rifd (Wilson, M.) 2.
—Ibx: ARHPEBHRA, 2006.8
(BB RIR 550

ISBN 7-115-14981-X
[. A 1. %... Nl. CES—REF&IF—&EX V. TP3I12
B RRA B F51E CIP BT (2006) 5 076828 =

BB B

Original edition, entitled Imperfect C++: Practical Solutions for Real-Life Programming, 0321228774 by
Matthew Wilson, published by Pearson Education, Inc, publishing as Addison Wesley Professional, Copyright ©
2005 by Pearson Education, Inc.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording or by any information storage retrieval system,
without permission from Pearson Education, Inc.

China edition published by PEARSON EDUCATION ASIA LTD., and POSTS & TELECOMMUNICATIONS PRESS
Copyright © 2006.

This edition is manufactured in the People’s Republic of China, and is authorized for sale only in People’s
Republic of China excluding Hong Kong, Macau and Taiwan.

SRFREARXNERA (FRFFEFE. RVENTREMDEAEHE) 4.

ABHERH Pearson Education (B4 B HARER) BABHIRE. TREETEBHNE.

B PR A5 58
Imperfect C++ (ZEIZER)

¢ F [%] Matthew Wilson
TIRE XK

¢ ARBPHHBRAEHREIT RiER s mEs 14 8
ME4m 100061 BTEH 315@ptpress.com.cn
R4k http://www.ptpress.com.cn

bR SCARHEENRI T ENRI
FERIE BIEIL R RATH S48
¢ JFFA. 800x1000 1/16

Engk: 39
¥ 813 FF 2006 FF 8 B 1K
En¥: 1-2500 2006 - 8 HALRTE 1 KETRY

ZEREGRZILS EF: 01-2006-3201 5
ISBN 7-115-14981-X/TP * 5541
FEfr: 65.00 T (FEHED
EERE ML (010)67132705 ENEREHRL: (010)67129223

AEFRRE

B2 C++ERRBXNSHE, BREFFIN: C+HBSHAST=E. hrt,
R L BETENREBS.

WMITIAR C++EBRRFKBIRE? £ C++P, WAFIMALIR. RREIFOWTSHFSCHBERIAF
R0 WEANBH C++TVERTRISEVENTSE . BTN RURKEFERNTN? RBIR
RETBRTR? A BER——BEILTM, Y C++BF— T mexE2A, 2B
EHEAHDITRE, FHRIVSIEIRRTSER ., BPHRZFSAEE0UFTEY. MMKRITIRIK
BRI, BIXLARHSLAEFENRN C++OENER.

APEEE—EEND C++2ERIIINBLENSE, tEEN C++RIEa)—EE)
SRAT B IEABMBENEE S S,

To Chris, for all the lessons
To Dad, for the inspiration and the resolve
To Grandma, for the pride
To James, for the brotherhood
To John, for the conviction
To Mum, for the wisdom and the facilities
To Sarah, for the support and the love (and the boys)
To Suzanne, for setting the targets and lighting the way

And to my boys: may you take only the blessings

M =B

BRI ERROZTIIREEE Cr+, EERX CHNE R EXT BT FEERAN 32°
KR 10% MMM LIRS AR, REANXEER BB +I8E. RRERAIFOANLE,
R BRAG LUK A iy b 38 43 B) I R S BR 8RB Frederick P.Brooks &5 : “REREMZHBITA
7. REERBWRRES SRXMWLIEK. BRASGEAKESHEME.

XEEYTRR P REWSYT, ERNUTRREAFIABHBEALEN, DARERE A
CHHE . RATRER Java Bk C BRHAR ERIE T HRESE, B RXAFATGREN P REIRFIRiT
B CHME S, fMEREm, REREN, BAREHFAREES CHERAKRE. AEEHNZER
IF, BERVRERVFRER I P 1R B & R IE R A CH++HIE e o

RGN DPHRUT2

REZXABHMENETS FHARERTN —LER. SUEHMTHENRZRERRCKRER CH+L&
HAERZAL, e HERAERELLR RN EXMATER. RAEBREETEAH/E RSN T XL
A ERZIFNR:

o WM CHABMAREFHFLEAL.,

o HRGIEAERR R AU RIFEA @M ERISRKRES

o WfFE CHATARMEMATFEEK) REXATHANKREARFTESF TR, BENSE. BENRLL
RE&REE,

o RAHEBLHAM, CPHROFE, URKBRTE, WETEXREHRN. MM ES THEHKEZ
FtERTE -

o WRHERESE (MERXHLENE) HAimgmiFR. F. REERSHRANKE.

o GIFM ERET WM T LA AT RN IFIR T LRI AR .

" BITERFESWEARM AKXV,

Imperfect C++ (3 XK)

o KARISHZ B YTHF AT REE, URE T ILEIINAT A BB E AR,

o C++Xt RAII CEUFIRERENHI44L, Resource Acquisition Is Initialization) HLEIFISTHRE, LA IZHLE
AT LA 32 F 20 A& o 1) R ek

o D {e] R i BBt K PR BE M PR BN 4 130 8% B0 B8 7 KT & IR KSRt 1]

BT LEEXE “¥E”, RESHAEEETHE. EAWTEFHE. B, ERAREN.

BYSEE, HEREZRFEEN CHEREMBAERPFRIAFT BEFEAR, A5 RMAITHR
BIFRBmEME N LEE S . 2RELHEF RANGSSEPRESHEXRENFBHXERNAZIEE
RLAES, EMKLIRMENIREE X —SERATER LR,

BIPNEERNABARTLERABERAEN—V), ERPEBRHERTFUHABTHEEEREE
EFAA B SR TRAES R H &,

RetrieLxne

BRIEFARS—FRENS, FUALIBREFLMAREEC2MEN. SR, WEXRKLAY
SRR EBEXMEL THE, ERERENMNODANSKEFRIBL IR Scott Meyer [
Effective C++Z 5 Herb Sutter [f) Exceptional C++ R 5 H PR Z KBS . REBRFIHE —&
C++ “X£” , B Bjamne Stroustrup f] The C++ Programming Language. BIFAFGBIRAMF L Z B
B0 (RBEREBIX— A , BRI LEXEBELIXTESHERSE, BICHRREESE
%I,

EBTEEFHALHERNAE B—F0A CH+EERRWMMKE) , HRIFBHEERFEKITE
MY, | RERETEMITHESIR, ER, RIT R R S TR 8 AR, B Cr
PRUERE AR BAT MR L . RSB HEIR 00F FSSIZE— N S KR, ERITUHEIA,
ERMBERMZFER C+AE “ARBE” MEEH, MEXUAXBAUESNEEER.

HTREMNLAENEMSEREE, FEPPOREIFERBELKBTRER 53, THF
£, BHEILPHEREBETUEET K “EETLL” MIARHESR (LR A) FHE. 4R, 5
ARG MG i 28 R T LU RIRB I, I BAR AT LUABME MR G I SR A B 4R 13X SE 0D,

RERTR, RASRESEY RISENRERSE. EAEA. RAMRUBMERE T —2, Fol,
THRUTHERSTHHEE (REHFELARaT) : COM H CORBA. AR (UNIX # Win32) .
STL. £ (POSIX #l Win32 1) . UNIX L& Win32. 2 HHPE UL A SHEARNES. b,
BB IE—FHL R MR BRI, LR FRE AR Tk s,

BT C BAIMIRERAREURBERAFEAOEES, BRESHEAEN TR EENESH
. REABRXT CHi, BEXEFE, C M CHZANANLTERES, R\ NEXLER
EFEREL CICH+REEEN. FLL, TUABEHBIFRIN, RITENEERDT C RIXH Cr+iy

' WRGEEMUBS, BB PIIHME T BETLRARNATRADNSBERTHE— B2 A,
2

=
mip

—ERE .

Besh, BIEET PN EZEREE. REBEEFRNBIATENREREFEE EEK, HEAIHEITR
BEX—BRRFRE. ABABEREXEMBFGENMERR. BUBLRE, SRET FHLRY
B, AREZERGPMAREFSRIE CrH+PBRINEE. ABRITFRERARIEESEDHRRZ
—. RAMIFMEEERACHHE L, BT REBRRR 2T REIF M TEK SRR T

FHEVBELRT5N

ABHEBRNEDS N 6 NS, B8R —NERT 5~7 FAR, §— =N —E %
HF.

BRAEBHAL A “Imperfect C++” , BARMAEBTREMNBHEFEMARTEEZ L, XREMFMN
EFXRBRERTS KA —LHTIEN “AR5%8% (mperfection) ” HEE. EBMHTLES, XEREEY
SeHIBHEFE, XEHEIESRHEIIOMEZENERLRERN. SN EYNEESHE
MEERRE, FRAERANMAECHN—AIREEZL. REFTR, RRSEM AN ITREA
RBPIXLEE, REDAFREREZEBR T . BEABNBNES R, XBREEY b
SR/ INBRAEARREBRE, TRBAEIEKR, MG ESE. FEMNite.

ARHARERANEN BB RNBE, BRFE—ZUFMLEIRNEFSBNES. 4
B, KM EEENTOARRREVESHONRITHEN, BRESEIEZHNENZ E, Bl
BRAEURERAERS, & MBI REIRFIE. R, —BRRE—RE, BkERS 2R sy,
FRITUREFRERZMEE L, TAEFEBRHENRT. £8 -5, ZH—RARNANUFHS
#, BT DURIRFE R — .

ERERTTE, 81 BIEE 4 BAEREH T —MMB BRI, MHARRE T HIGASE
MR, | RES S BMAHE 6 B TEMBE 3 BB 4 BHM—LAA, BT RERERA
HABRMET . R0 LUR RIS — B B .

FEABRNTZEL 4 MG, HF A ME7ES A 1 & S8 R 45 78 580 B
G5B MR B MIRRER—MERN CH TRIMZERIBE X — iR SUR P F i —1t54 A B R MR
KR, MR C A4 Arturius B, XE— /MBS FR LB R, FOFT LIRS hi
FE. BE, M3 D MEMLRIAR.

RIORWBRRE 9 —B BEATUBRRTHR, HRETUEEET “25057 . RLATH SRS
&ﬁ%kﬁiﬁﬁ#ﬁﬁo@ﬁZ%%%ﬂﬁﬂN%ﬂﬂ%ﬁ#Mﬁﬂ*m%ﬁ%ﬁﬂﬁﬁ%%%&ﬁ,
ﬁ%xi%%ﬂ“%%%ﬁﬁ%%%T”ﬁﬁﬁﬁ,ﬁﬁﬁ&ﬁ%%%ﬁ%@ﬁﬁﬁﬁﬁﬁ%ﬁ@ﬁ,
ﬁEWuEM%%Eo%%ﬁﬁm&ﬁﬂﬁ:ﬁﬁﬁ—lﬂ§#WEﬁﬁﬁﬁﬁIﬂmﬁ%ﬁmﬂo

AT RERDBRIGL R BEABOEN, RESRPHIRE RO T 28 b AU .

"33 BRI 3 A R A B BUBLAEE L R SL AR 1
3

Imperfect C++ (X AR)

HESAETBIPEIREERS O, EN—BRrTHNEXETHOLEE T ZRAN, RERTR
XA AR RN E T RBAARGE (Fiw, FibE AT RRETE, W22 HE%
GRS 3 T M B E YW A SBmLLTR (L 178 .

258N

PAEH A CHREMNBERIAFHEN—FERE: (FEHEEETHRN AR RIFENAESSESY. B
URAEBEXBHEES, BTSSRI H—BHXNBERNXESN, ELEHRR CHIBEFT AR
RELHIE C++ (C++98) BR C (C99) HruEF XS X,

thFEAAHE
it

BEPYEA T RS, ®iFS (AFEBPRBNKEFEBEREA) . WREF. TAURRMER
R, SMERVER B &R HRPAX R, X TARNRANE, HSEWRD.

WAL B

PRt T LUE I a0 F Pk R IREUR B % : http://imperfecteplusplus.com.

V4L

EILPHIANBEAT, BABRENRARPRAEFROBS 8, R LRI XS S
REBWOHEEAE. —ABEEBUER, HYESEREES TANTRE.

BB BRI FIRA Suzanne, MMM /IS SR KBIRBIER 27 %) , BFEE
R, CHA—ATRENHR, BINEZR. CRURFETZR —HREEHTHFER., B FEM Robert
£ BOREERLHFTREIRN S A B —HRH B/ Mis SR A KEE. LB Robert 7EX B 1] B (4
ZEENZHEREFEHRR RS

U Piker S0Ah TR KFEEX 25, JF AABKHHBERT, BRI, HEEEBRNTE. A
FER Dazzle, R EFRMNERARS L, FHAERET S HRF AL AN DBA KITIEE), 52 HA
BARLYURIR B R LA MAEF A Perl 1 Python BIZBIMHR T e R4 RIXAMRZS | WS Besso
THERA REHRIORENE . URBSEA KA. B Al R Cynth GER) #RUEHS GBIKE

DIRRIEE R T RAOGIDIRE, URET LURIRE 6B P (0 R R B 95 (R
TORAME S E A EIRE T, MR, KRR LR,

4

=
|

MERNIGR S (B, REATTRBBWETE - .

FL.0MEGA 808 State. Aim. Barry While. Billy Bragg. De La Soul. Fatboy Slim. George Michael. Level
42, Rush. Seal. Stevie Wonder L & The Brand New Heavies, #F i1 A0 B NIXA—E R LI F

BREZNBRMHES TREWNEE Sarah, BRiFHIHHE & FHERELOMEERE, MERH LM
ARG SRR OHPHEENHE!

B — S HARA, IR T I LN RRIFIEN . i Bob Cryan #1#%, it aes iR
—ZRBAHERFEE, HEER 3 ENARAERBRRAMOBR (ZHETE .

JE# i Richard McCormack ik BARFFIEMES L IRTEZ SMEE B TGRS B2 £ X BN R R A
MEBMATRRETEEXERT, REZHRERRIE Richard ZIE. Hob, B Graham Jones (2%
“Dukey”) HEBWE vi, EAHIEM 6 A K 8] B RBARFHE B K E U RRFOHITE. XK
7, LR

[FEIE B U Leigh A Scott Perry, BREREATMBRAA “188 7 MR HMRBHHA.

F5 5|5 Andy Thurling. 7EBRMHRIE LR L ARSI LR EESRITEB LR THEN, Andy
MR RERIE TS HELD. | Andy EHARRFEXNMTHTHSANBEOPL T EEEENR &,
“BARBERER S FIHFLMENERME (skegging itout) ” o 2 Chuck Allison W) LA % 32471 7
ARRRXANEE, BR-ARATEZNDELABEFRES: “H—RE 20 A2 508
HHREFEELSBRMAPHR” .

AT B EE K R A B AT HARAL B R UL Fofhah 8 S RE U AN (0 38 B . B8 3k (4 48 Peter
Gordon 47 TN BE — M RFTEM MRS A SR — A BKE R P RIS LR . RIS Peter 978
7185F Bemard Gaffney, AfR4FHds] 7 AR, HROHE T RS KK XN ILE BT, T
R Addison Wesley tiRAL 7= S T 35 301 1A MBS 72, 433% Amy Fleischer. Chanda Leary-Coutu.
Heather Mullane. Jacquelyn Doucette, Jennifer Andrews. Kim Boedigheimer LA Kristy Hart. Z0 @it (3F
B BT H 42 Jessica Balch AN RELITUHL A Bh B 4 IF 45 o MERE RO ATV . MBI B ER DL J 35 3 BB 1
5 (BIWMHRE “ize” HEMT “ise”) o EEHFHIBKH Debbie Lafferty, 2002 43— RAEHE
BHREWHT “Imperfect C++” X & 3k, J Debbie Lafferty BxRhBATiE SN .

BB WP HENT, f01/2 Chuck Allison. Dave Brooks. Darren Lynch. Duane Yates. Eugene
Gershnik. Gary Pennington. George Frasier. Greg Peet. John Torjo. Scott Patterson LA % Walter Bright. #
HAAIR AT R FIA R ALRE, FREEBOE. A 1H I — e A iERARRR O R, 4 A E 3 BRI A
SETRTOE, EELMAMIINRBRE RERAE T REERLNRE. RIVEEE—AS
BHHRS, KAZMEARFEOAMITUR TEAE, BRIEPAEHARKLET, HEBLTR
Mtz MR, XHAFY!

"M RIE TR SRR X HEF A
? “skegging it out” RALLTERRH--MAIE, WAL “HARARLHIAOEER"

5

Imperfect C++ (3 SUR)

FIFEE M Addison Wesley f{18 B {1, 4935 Dan Saks. JC van Winkel. Jay Roy. Ron McCarty. Justin
Shaw. Nevin Liber LA % Steve Clamage. fhfi1f R85 BX FA B K BB 1000 L TRETE
FEEMEM, MAEBHREE T —RRWHRENHOKRENER. (A —2FE, RECHKBTES
ERERERAEE, ROE-RUENFEHFTESEZ OB, B4R RGBS RS .

KA Peter Dimov RIFRIFIFMKE T (EE 26) , FEREXE S BISELHTIRGFHEDL.
& Kevlin Henney X 28 19 FERIEAEIRHIM — L7 BT IR FTE THGE. B Joe Goodman 1740 & %
FXC++ ABI I —#i oy (55 7 A 8 F), M RB LR 2 F—MEFEMITIL . B Thorsten Ottosen
158 1 BHEXREARX RIS RN B LN AR .

#5748 Chuck Allison. Herb Sutter. Joe Casad. John Dorsey L} Jon Erickson, Ah4i17E5t 38L&
HEER T ARG TR KB SRR

&% Bjarne Stroustrup B, MIEARF HTI E— AR IR, B, HETREREHIAE T
MERIES! :

it Walter Bright 75215) 5 1F il #2 b FEAE R T BSGAB AR 75 (40 Digital Mars C/C++47 7888, 7ttt
Ft b B Z O B FAK RREE I R R AT AR TRAT L, T SR RAFHUBREIPIA D SRR, BHt
BRXEBMEERRT RO R, RS Greg Comeau, &t A X[Comeau 4% 3L4HE 4
Z KB, Comeau £ H AL BBMARHER CH4miTae! MR T RS T H R REER I 4 1% 22 (1L 1
25, BERZ A LRERN S TR BRI hE A

TR CMP R A7) SaF B B BB EMIIFIY LR BRI ERH— SN A, HFAGREE
KRR X EBAERE S AP (UHFED) .

&t Borland. CodePlay. Digital Mars. Intel. Metrowerks U4 & Microsoft 23 8 MR IGHIFT. EFELLR
WME T RAERM R FE.

59| 2 Digital Mars. Intel ! Watcom 2 5] BAR BB 4R 1R S8 IMZERE o648 (LFE D) .
Fi4h, GregPeet fEMMEI RAR T HNE KEMERKAKEY.

i§f18f C/C++ User's Journal. Dr. Dobb's Journal. BYTE EA% Windows Developer Network Hi%, fif]
AR EN SR RIFHIR T RBHs B i,

R BB A LR, LIRIBESCER RS CHHa KA LR A) IO A . 12 Attila
Feher. Carl Young. Daniel Spangenberg. Eelis van der Weegen. Gabriel Dos Reis- Igor Tandetnik. John Potter-
Massimiliano Alberti. Michal Necasek. Richard Smith. Ron Crane. Steven Keuchel. Thomas Richter U &
“tom_usenet” , ERIFIEHFREANBAGFIH. SLHKE llya Minkov, RMERKN STLSoft FERIMER
(Properties) SCHLK), MR B CURTRASAEXANE k. WMERREAXAMEN, RTEKTHASSE
RXMBEHERER (WE35F) .

BJe, EERG STLSoft BEIIFARF, BEMNKERRE, XNMEFNTF SRS ELE,
MEABHHELERIthLTR/EREE.

Matthew Wilson

Prologue: Philosophy
of the Imperfect Practitioner

This book is about good practice as much as it is about C++ language techniques. It is not just
about what is effective or technically correct in a specific situation, but what is safer or more
practical in the long run. The message of the book is fourfold:

Tenet #1—C++ is great, but not perfect.

Tenet #2—Wear a hairshirt.

Tenet #3—Make the compiler your batman.

Tenet #4—Never give up: there’s always a solution.

Together, these make up what I like to call the Philosophy of the Imperfect Practitioner.

C++ Is Not Perfect

I was taught very early, by a mother embarrassed by the overweening confidence of her
youngest offspring, that if you’re going to trumpet the good things to people, you’d also better
be prepared to acknowledge the bad. Thanks, mum!

C++ is superb. It supports high-level concepts, including interface-based design, generics,
polymorphism, self-describing software components, and meta-programming. It also does more
than most languages in supporting fine-grained control of computers, by providing low-level
features, including bitwise operations, pointers, and unions. By virtue of this huge spread of ca-
pabilities, coupled with its retaining a fundamental support of high efficiency, it can be justly
described as the preeminent general purpose language of our time.'! Nevertheless it is not per-
fect—far from it—hence the title of this book.

For very good reasons—some historical, some valid today—C++ is both a compromise
[Stro1994] and a heterogeneous collection of unrelated, and sometimes incompatible, concepts.
Hence it has a number of flaws. Some of these are minor; some of them are not so minor. Many
come about as a result of its lineage. Others stem from the fact that it focuses—thankfully—on
efficiency as a high priority. A few are likely fundamental restrictions to which any language
would be subject. The most interesting set of problems comes about as a function of how com-
plex and diverse a language it is becoming, things that no one could have anticipated.

This book meets this complex picture head on, with the attitude that the complexity can be
tamed, and control wrested back to where it belongs, in the hands of the informed and experi-
enced computing professional. The goal is to reduce the consternation and indecision that is ex-
perienced daily by software developers when using C++.

'Note that I’'m not asserting that C++ is the best language in all specific problem domains. I wouldn’t advise you to
choose it over Prolog for writing Expert Systems, or over Python or Ruby for system scripts, or over Java for enterprise
e-Commerce systems.

7

8 rologue: Philosophy of the Imperfect Practitioner

Imperfect C++ addresses problems that software developers encounter not as a result of in-
experience or ignorance, but rather problems encountered by all members of the profession,
from beginners through to even the most talented and experienced. These problems result partly
from imperfections inherent in the language itself, and partly from common misapplications of
the concepts that the language supports. They cause trouble for us all.

Imperfect C++ is not just a treatise on what is wrong with the language, along with a list of
“do-nots”; there are plenty of excellent books available that take that approach. This book is
about providing solutions to (most of) the flaws identified, and in so doing making the language
even less “imperfect” than it is. It focuses on empowering developers: giving them important in-
formation regarding potential problem areas in the tools of their trade, and providing them with
advice coupled with practical techniques and software technologies to enable them to avoid or
manage these problems.

Hairshirt Programming

Many of the textbooks we read, even very good ones, tell you about the ways in which C++ can help
you out if you use its features to their full extent, but all too often go on to say “this doesn’t really
matter” or “that would be taking [rigor] a bit far.” More than one former colleague has engaged me
in lively debate in a similar vein; the usual arguments amount to “I’m an experienced programmer,
and I don’t make the mistakes that XYZ would prevent me from doing, so why bother?”

Phooey!

This is flawed in so many ways. I'm an experienced programmer, and I do at least one stu-
pid thing every day; if I didn’t have disciplined habits, it would be ten. The attitude assumes
that the code’s never going to be seen by an inexperienced programmer. Further, it implies that
the code’s author(s) will never learn, nor change opinions, idioms, and methodologies. Finally,
what’s an “experienced programmer” anyway??

These people don’t like references, constant members, access control, explicit, con-
crete classes, encapsulation, invariants, and they don’t code with portability or maintenance in
mind. But they just love overloading, overriding, implicit conversions, C-style casts, using int
for everything, globals, mixing typedefs, dynamic_cas t, RTTI, proprietary compiler exten-
sions, friends, being inconsistent in coding styles, making things seem harder than they are.

Bear with me while I digress into some historical allegory. After being made Archbishop of
Canterbury in 1162 by Henry II, Thomas A Beckett underwent a transformation in character, re-
forming from his materialistic ways and developing both a genuine concern for the poor and a
profound sense of remorse for his former excesses. As his body was being prepared for burial,
Beckett was found to be wearing a coarse, flea-infested hairshirt. It was subsequently learned
that he had been scourged daily by his monks. Ouch!

Now, personally I think that’s taking repentance and soul purging a tad far. Nevertheless,
having in my earlier days made cavalier use of the power of C++ to create all manner of fell
perversions (see Appendix B), these days I try to take a more temperate approach, and thus wear
a bit of a hairshirt when programming.?

t’s hard to tell these days, when every vitae you see contains self-assessment matrices that are marked 10/10 for each
metric.
’If the hairshirt analogy is too extreme for your tastes, you might like to think about yoga instead: tough, but worth the
effort.

Prologue: Philosophy of the Imperfect Practitioner 9

Of course, I don’t mean I kneel on a gravel floor, or that I’ve punched nails through the back
of my Herman-Miller, or have stopped blasting cooking dance music while I code. No, I mean I
make my software treat me as harshly as I can whenever I try to abuse it. I like const—a lot of
it—and use it whenever I can. I make things private. I prefer references. I enforce invariants. I
return resources from where I got them, even if I know the shortcut is safe; “Well, it worked fine
on the previous version of the operating system. It’s not my fault you upgraded!” I’ve enhanced
C++’s type checking for conceptual typedefs. I use nine compilers, through a tool (see Appendix
C) that makes it straightforward to do so. [use a more potent NULL.

This is not done for a nomination for the “programmer of the year” award. It’s simply a
consequence of my being lazy, as all good engineers are wont to be. Being lazy means you
don’t want to find bugs at run time. Being lazy means you don’t want to ever make the same
mistake twice. Being lazy means making your compiler(s) work as hard as possible, so that you
don’t have to.

Making the Compiler Your Batman

A batman (as opposed to Batman) is a term derived from the days of the British Empire, and
means an orderly or personal servant. If you treat it well, you can make the compiler your right-
hand man, helper, conscience, your batman. (Or your superhero, if you prefer.)

The coarser your programming hairshirt, the better able your compiler is to serve you.
However, there are times when the compiler, acting out of duty to the language, will stymie
your intent, stubbornly refusing to do something you know to be sensible (or desirable, at least).

Imperfect C++ is also about allowing you to have the final choice by providing you with
techniques and technologies to wrest control back from the compiler: getting what you want,
not what you’re given. This is not done blithely, or as a petulant thumbing of the nose from man
to machine, but in recognition of the fact that it is the software developers who are the main
players in the development process; languages, compilers, and libraries are merely tools that
allow them to do their job.

Never Say Die

Despite most of my education being in the sciences, I'm actually much more of an engineer. |
loved those early sci-fi books where the heroic engineers would “Jury-rig” their way out of
sticky situations. That’s the approach taken in this book. There’s theory, and we go with that
first. But as often as not, when working on the borders of the language, most of the current com-
pilers have problems with theory, so we have to code to their reality. As Yogi Berra said, “In
theory, there’s no difference between theory and practice. In practice, there is.”

Such an approach can bring powerful results. Engineering effort, rather than academic in-
duction, coupled with a stubborn refusal to live with the imperfections of C++, has led me
(eventually) to a number of discoveries:

* The principles of explicit generalization via Shims (Chapter 20) and the resultant phenome-
non of Type Tunneling (Chapter 34)

* An expansion of C++’s type system (Chapter 18), providing discrimination between, and
overloading with, conceptually separate types sharing common implementation base types

10 Prologue: Philosophy of the Imperfect Practitioner

A compiler-independent mechanism providing binary compatibility between dynamically
loaded C++ objects (Chapter 8)

+ An incorporation of the principles of C’s powerful NULL within the rules of C++ (Chapter 15)

* A maximally “safe” and portable operator bool () (Chapter 24)

* A fine-grained breakdown of the concept of encapsulation, leading to an expanded tool kit
for the efficient representation and manipulation of basic data structures (Chapters 2 and 3)

« A flexible tool for efficiently allocating dynamically sized memory blocks (Chapter 32)

* A mechanism for fast, nonintrusive string concatenation (Chapter 25)

* An appreciation for how to write code to work with different error-handling models (Chap-
ter 19)

* A straightforward mechanism for controlling the ordering of singleton objects (Chapter 11)

* A time-and-space efficient implementation of properties for C++ (Chapter 35)

Imperfect C++ does not attempt to be the complete answer to using the C++ language.
Rather it takes the developer down the path of pushing beyond the constraints that exist to find-
ing solutions to imperfections, encouraging a new way of thinking outside of the square.

I’m not perfect; none of us are. I do bad things, and I have a heretical streak. I have a poor
habit of writing protected when I should write private. I prefer to use printf () when
perhaps I should be favoring the IOStreams. I like arrays and pointers, and I’'m a big fan of
C-compatible APIs. Nor do I adhere religiously to the hairshirt programming philosophy. But I
believe that having such a philosophy, and sticking to it wherever possible, is the surest and
quickest way to achieve your aims.

The Spirit of Imperfect C++

As well as the tenets of Philosophy of the Imperfect Practitioner, this book reflects in general
my own guiding principles in writing C++. These generally, though not completely, reflect the
twin credos of the “Spirit of C” [Como-SOC]:

* Trust the programmer: Imperfect C++ does not shy away from ugly decisions.

* Don’t prevent the programmer from what needs to be done: Imperfect C++ will actually
help you achieve what you want to do.

* Keep solutions small and simple: most of the code shown is just that, and is highly indepen-
dent and portable.

* Make it fast, even if it is not guaranteed to be portable: efficiency is given a high impor-
tance, although we do, on occasion, sacrifice portability to achieve it.

and the “Spirit of C++” [Como-SOP]:

* C++ is a dialect of C with modern software enhancements: We rely on interoperability
with C in several important cases.

* Although a larger language than C, you don’t pay for what you don’t use (so size and
space penalties are kept to a minimum, and those that do exist must be put in perspective
since what needs to be compared is equivalent programs, not feature X vs feature Y).1

Prologue: Philosophy of the Imperfect Practitioner 11

* Catch as many errors at compile time as possible: Imperfect C++ uses static assertions and
constraints wherever appropriate.

* Avoid the preprocessor when possible (inline, const, templates, etc. are the way to go in
most cases): we look at a variety of techniques for using the language, rather than the pre-
processor, to achieve our aims.

Beyond these tenets, Imperfect C++ will demonstrate an approach that, wherever possible:

* Writes code that is independent of compilers (extensions and idiosyncrasies), operating-
systems, error-handling models, threading-models, and character-encodings

* Uses Design-by-Contract (see section 1.3) wherever compile-time error-detection is not
possible

Coding Style

In order to keep the book to a manageable length, I’ve had to skip much of my normal strict—
some might say pedantic—coding style in the examples given. Chapter 17 describes the general
principles I tend to use in laying out class definitions. Other coding practices, such as bracing
and spacing styles, are of less significance; if you’re interested, you will be easily able to pick
them up from much of the material included on the CD.

Terminology

Since computers speak the exact language of machine code, and human beings speak the vari-
ous inexact languages of mankind, I’d like to define a few terms here that will be used through-
out the remainder of the book:

Client code. This is code that uses other code, usually, but not limited to, the situation of
application code using library code.

Compilation unit. The combination of all source from a source file and its entire dependent
include files.

Compile environment. The combination of compiler, libraries, and operating system against
which a given code set is compiled. Thanks to Kernighan and Pike [Kern1999] for this one.

Functor. This is a widely used term for Function Object or Functional, but it’s not in the
standard. [actually prefer Function Object, but I’ve been persuaded* that Functor is better be-
cause it’s one short word, is more distinctive, and, most significantly, is more searchable, espe-
cially when searching online.

Generality. I’ve never properly understood the word genericity, at least in so far as a pro-
gramming context, albeit that I sometimes bandy about the term with alacrity. I guess it means
being able to write template code that will work with a variety of types, where those types are
related by how they are used rather than how they are defined, and I restrict its use to that con-
text. Generality [Kern1999] seems both to mean it better, and to apply the concept in a much
broader sense: I'm just as interested in my code working with other headers and other libraries
than merely with other (template parameterizing) types.

“Blame several of my reviewers for this.

12 Prologue: Philosophy of the Imperfect Practitioner

In addition to these conceptual terms, I'm also including some specific language-related
terms. 1 don’t know about you, but I find the nomenclatural clutter in C++ more than a little
confusing, so I'm going to take a small time out to drop in some definitions. The following are
derived from the standard, but presented in a simpler manner for all our understanding, not least
my own. Several of these definitions overlap, since they address different concepts, but all form
part of the vocabulary of the accomplished C++ practitioner, imperfect or not.

Fundamental Types and Compound Types

The fundamental types (C++-98: 3.9.1) are the integral types (char, short, int, long
(long long / _ _int64), the (signed and) unsigned versions thereof,’ and bool), the
floating-point types (float, double, and 1ong double) and the void type.

Compound types (C++-98: 3.9.2) are pretty much everything else: arrays, functions, point-
ers (of any kind, including pointers to nonstatic members), references, classes, unions, and enu-
merations.

I tend not to use the term compound types, since I think the term implies things that are
made up of other things, which can’t really be said for references and pointers.

Object Types

Object types (C++-98: 3.9; 9) include any type that is “not a function type, not a reference
type, and not a void type.” This is another term I avoid, since it does not mean “instances of
class types” which one might think. I use instances to refer to such things throughout the book.

Scalar Types and Class Types

Scalar types include the (C++-98: 3.9; 10) “arithmetic types, enumeration types [and]
pointer types.” Class types (C++-98: 9) are those things declared with one of the three class-
keys: class, struct orunion.

A structure is a class type defined with the class-key struct; its members and base
classes are public by default. A union is a class type defined with the class-key union; its
members are public by default. A class is a class type defined with the class-key class; its
members and base classes are private by default.

Aggregates

The standard (C++-98: 8.5.1; 1) describes an aggregate as “an array or a class with no user-
defined constructors, no private or protected non-static data members, no base classes, and no
virtual functions.” As an array or a class type, it means that there is a bringing together of sev-
eral things into one, hence aggregate.

’Note that char comes in three flavors: char, unsigned char, and signed char. We see how this can be problematic in
Chapter 13.

