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PREFACE

The Boundary Element Method has become an accepted and powerful
method for the solution of many engineering problems. Recent theoret-
ical and computational developments have transformed the BEM from a
technique purely for research into an efficient tool for engineering design.
These developments are in great part due to the many researchers who have

attended this series of conferences since the first was held in Southampton
in 1978.

The 12th International Conference on Boundary Elements in Engineering
held at Hokkaido University (Sapporo) Japan, during 24-27th September
1990 reviewed the latest developments in the technique and pointed out
advanced future trends. A special objective of this Conference was to bring
together researchers from all over the world and make them aware of the
rapid advances in the Boundary Element Method made by colleagues in
Asia. The conference also acted as a link between practising engineers and
industrial users of BEM and researchers working on the latest developments
of the method.

This book with its companion volume comprises edited versions of the pa-
pers presented at the meeting. The present volume includes sections on
Fluid Mechanics; Free Surface Problems; Acoustics; Sensitivity Analysis
and Optimization; Electromagnetics; Inverse Problems; Engineering Ap-
plications and Pre- and Post-Processing. The sections in the companion
volume deal with Mathematical and Computational Aspects; Potential and
Diffusion Problems; Stress Analysis; Plates and Shells and Dynamics.

The Organizing Committee wishes to express its gratitude to the organiza-
tions sponsoring the conference, i.e. the Japan Society for Computational
Methods in Engineering (JASCOME); the Computational Mechanics Insti-
tute (CMI) of Technology; the International Society of Boundary Elements
(ISBE). They are also grateful to the members of the Scientific Advisory
Committee who made this Conference successful. Thanks are also due to
Kozo Keikaku Engineering Inc. for its helpful support service at the JAS-
COME Office, in sharing the management of all the matter inherent to the
conference secretariat together with the Wessex Institute of Technology sec-
retariat.

C.A. Brebbia
M. Tanaka
T. Honma

September 1990
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A Hybrid Panel Method for Aerofoil
Aerodynamics

D. Mateescu

Department of Mechanical Engineering, McGull
University, Montreal, Quebec H3A 2K6, Canada

ABSTRACT

This paper presents a hybrid panel method for aerofoils in irrotational flow, which
uses a panel method in conjunction with an analytical solution based on the method of
velocity singularities developed in References [1-4]. The basic panel method uses uni-
form source panels on the aerofoil contour and linearly-variable doublet panels on the
camberline. The method is validated by comparison with the exact solution derived by
conformal transformation for Karman-Trefftz aerofoils. The results obtained with this
hybrid approach were found to be in better agreement with the exact solution than the
basic panel method, which requires a larger number of panels to achieve comparable accu-
racy. As a result, the present hybrid panel method has a substantially better computing
efficiency in comparison with the basic panel method.

1. INTRODUCTION

The boundary element methods in aerofoil aerodynamics lead to potential flow solutions
which can be used in conjunction with real fluid flow calculations resulting from bound-
ary layer corrections, compressibility corrections and estimation of the flow separation
effects. In this sense, several panel methods based on source, vortex, doublet or higher

order singularities have been widely used in applied aerodynamics (especially in the pre-
liminary design stages).

In general, the panel methods provide very accurate potential low solutions, but they
are computationally less efficient than the analytical methods of solution, which however

are usually less accurate especially at high angles of attack and when thick and cambered
aerofoils are involved.

This paper presents a hybrid panel method for aerofoil aerodynamics, combining the

advantages of the panel methods and of the analytical solutions, that is a high accuracy
combined with a good computing efficiency.

In the first part, the paper presents briefly the method of velocity singularities which
was recently used to develop a nonlinear analytical solution for aerofoils in irrotational
flow [1]. The method of velocity singularities was initially developed as a linear theory
by Mateescu and Newman [2,3] and applied to the analysis of flexible-membrane and jet-
flapped aerofoils [3,4]. This method, which is used in the present hybrid panel method,
determines the perturbation velocity field by considering the singular contributions of the



4  Fluid Mechanics and Field Problems

geometrically important elements of the aerofoil, namely the leading edge and the ridges
(points where the aerofoil surface slope changes), which are mathematically derived to
satisfy the basic boundary conditions and the Kutta condition at the trailing edge. This
type of approach is somewhat similar to that developed by Carafoli and Mateescu [5,6] for
wings in supersonic flow, although for that case the singular contributions were derived
in a crossflow plane from initially different governing equations.

The paper presents next a panel method using uniform source panels on the aerofoil
contour and linearly-variable doublet panels on the camberline, with a special leading
edge treatment. The results obtained with this panel method, as well as the nonlin-
ear analytical solution developed in Reference [1], were found in general to be in good
agreement with the exact solution obtained by conformal transformation for Karman -
Trefftz aerofoils. However, the panel method is less accurate near the leading edge and
requires usually a large number of panels on the aerofoil contour and on the camberline
for accurate results.

In order to obtain a better accuracy with a reduced number of panels, a hybrid panel
method is developed in this paper. In this hybrid method, the panel method is used
in conjunction with an analytical solution based on the method of velocity singularities
[1-4], which leads to improved accuracy and computing efficiency.

2. ANALYTICAL SOLUTIONS BASED ON THE METHOD OF
VELOCITY SINGULARITIES

The fluid velocity around an aerofoil placed at an angle of attack « in an incompressible
uniform flow of velocity U, can be expressed as

V =i (Uscosa+u) +]j (U sina +v) | 65

where u and v are the perturbation velocity components parallel and normal to the chord,
respectively, and 1, j are the unit vectors of the axes z and y directed along the aerofoil
chord and normal to it. In a potential flow, u and v are harmonic functions (satisfying
the Laplace equation) and can be expressed as the real and imaginary parts of a complex
conjugate perturbation velocity defined as

W(Z):U(x,y)-l [v(z,y)—vo], z:z+iya (2)
where vg is a conveniently chosen constant and where the complex variable z is defined
by fhe coordinates z and y of the physical plane.

A typical problem for the linear theory is represented by a thin flapped aerofoil shown
in Figure 1, characterized by a sudden change 3 of the aerofoil slope at the ridge R(z = s)
and defined by the boundary conditions on the chord line

_ vo for 0<z<s
vo= {vo+Av for s<zr<e ()
u = 0 for z<0 and z>e¢, (4)
where
v = [—sina+cosatana) U, , (5)
Av = cosa [tan(6 — @) — tan §] ; (6)

the condition (4) implies that the chordwise perturbation velocity is, in the linear theory,
antisymmetric with respect to the chordline.
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The solution for this prototype problem was derived in the complex plane z = z + iy,
as shown in References [1,2], in the form

c— 2z 2 -1 (c_z)s

W(z) = A,/ poa cosh _——c(s—z) (7)

where
A:—’Ug—zA’U cosh’l\/g. (8)

T c
Yy
R
5 g
L T
)// T
Us s
c

Figure 1. Geometry of a typical thin flapped aerofoil at incidence.

On the upper part of the aerofoil, the chordwise perturbation velocity, u, may be
expressed as

u(z) = A /(c—z)/z — Av G(c,s,2) (9)

where
2 cosh™! M— for 0<z<s
T e(s—z)
G(e,s,z) = _ (10)
2 sinh~! (c_z‘)s for s<zr<e
T c(x — s)
0 for z<0, z>c¢.

The first and second terms of equations (7) and (9) represent the singular contributions
of the leading edge (z = 0) and ridge (z = s), respectively, which implicitly satisfy the
Kutta condition at the trailing edge (z =¢).

The solution for a continuously-cambered thin aerofoil, which is defined by the cam-
berline slope h’(z) and by the boundary condition

va(z) = Us [—sina + h'(z) cosal , (11)

can be obtained by superimposing infinitesimally flapped aerofoils in the form

c—x

uaz) = - [UA(0)+% /O v (s) cos~1 \/éds] -

- /OC vy(s) G(c,5,z) ds .

(12)
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When a polynomial expansion (as adopted for NACA aerofoils [7]) is assumed for the
camberline slope,

K(z)= Zn: hi (%)k , (13)
k=0

the solution becomes

n k .
i -z
ua(z) = U |sina — cosa Z hg Z Qk—j (%) z palt (14)
k=0 j=0
where
(2K (15)
T = 92 (k)2 -

Similarly, for an aerofoil of symmetrical thickness at zero angle of attack defined by
its slope g’(z) and by the boundary condition vs(z) = U ¢'(z), the linear solution for
the chordwise perturbation velocity is obtained in the form

us(z) :% [vS(O) ln:c+/: Vs(s) In(z — s) ds — vs(1) ln(z—c)] . 6)

However, depending on the expansion considered for g’(z), the leading and trailing edges
may be singular points in this pure linear solution, instead of being stagnation points,
although for slender aerofoils this solution may be sufficiently accurate for the most part
of the aerofoil except the extremities. The correct flow at the leading and trailing edges
is better predicted by the nonlinear approach or by the local linearization method.

Local linearization method. A correct behaviour of the flow field at the leading and
trailing edges can be obtained with a simple but very accurate solution [1] based on the
local linearization of the boundary conditions with respect to the tangential component
of the free stream velocity relative to the aerofoil surface, Uy, = Uy cos(T — «), where
T is its slope angle with respect to the chord and « is the incidence. In this local
linearization method, the boundary conditions are expressed using the tangential and
normal components of the perturbation velocity, u, and v,,, defined as

uy =V —Us,, vy = U, tan(r — a). 17

Following Mateescu and Nadeau (1], the boundary condition for a symmetrical aerofoil
at zero incidence can be expressed as

N
c—z T\k
U 2 Ve, tan7 = Uso, ¢'(2),  9'@)=1[*== D ot (3) (18)
k=0

leading to the solution for the tangential perturbation velocity component

N k-1 .
U =Uo, D 9k |Gk — c_c S @i (%)J : (19)
k=0 0

i=
The local linearization solution for the pressure coefficient on the aerofoil,
v? 14 ue/Uso,)®
T = 1-— —‘——( Ut{ 00.2) , (20)
Ug 1+[¢'(2)]

was found to be in very good agreement with the exact solution derived by conformal
transformation for symmetrical Jukovski aerofoils, as shown in Reference [1].

Cp=1-
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Nonlinear solution. The boundary conditions on the upper and lower surfaces of a
general aerofoil at incidence & may be expressed as

Uoo sin a + v,
Uoso cOs a + uy

Us sin a + v;

Y '
=Hk(2)+ (), Uso cos a + u;

=k(z)-g'(2), (21)
where h/(z) is the camberline slope and £g¢'(z) is the slope associated with the aerofoil
thickness, considered symmetrically distributed with respect to the camberline.

As shown in Reference [1], the flow field around the aerofoil may be decomposed into
an antisymmetric flow field (+u4 and v4) and a symmetric one (us and +vg), ie.

Uy = Ug + us, Uy = Vg + Vs, (22)
ur = ~ug +us, U =v4q —vs.

In this manner, conditions (21) may be recast to define the boundary conditions for the
antisymmetric and symmetric flows in the form

va(z) = —Ussina + [Uy cosa -+ us(z)] h'(z) +ua(z) ¢(2), (23)
vs(z) = [Uscosa + u,(z)] 9 () + ua(z) h'(z) . (24)

Since in the nonlinear formulation the antisymmetric and symmetric flows are strongly
coupled (by contrast with the linear theory where they are completely separated), one
cannot expect to find analytical functions for the unknowns u4(z), va(z), us(z) and
vs(2z) to identically satisfy equations (23), (24), as well as (12) and (16). The strategy
adopted to solve this nonlinear problem was to consider convenient expressions for v4(z)
and vs(z), containing appropriate singularities and with a priori unknown coefficients,
which are used to derive u4(z) and ug(z) by integration from equations (12) and (16).
These solutions are then inserted in equations (23) and (24) which are imposed to be
rigorously satisfied at a certain number N of discrete points z; (j = 1,2, ..., N)on
each side of the aerofoil, leading to a system of algebraic equations which is solved to
determine the a priori unknown coefficients included in the assumed expansions of va(z)
and vg(z).

This approach led to very accurate nonlinear solutions, as shown in Reference [1},
where a typical number N = 10 discrete points was chosen on each side of the aerofoil.

3. BASIC PANEL METHOD

The basic panel method in this analysis uses source panels on the aerofoil contour and
linearly-variable doublet panels on the camberline, as proposed by Hunt [8]; the wake is
replaced in this approach by a panel with a uniform doublet distribution of intensity my,
equal to the circulation around the aerofoil. The fluid velocity can be expressed as

V=U, (icosa+jsina)+V<p, (25)

where ©(z,y) represents the perturbation velocity potential determined with the panel
method. The singularities associated with the source and doublet panels are derived from
the application of Green’s theorem, which leads to the representation of the perturbation
potential in the form

w(z,y)=/s g fs(r) dS+/

S:USw

where ¢ is the intensity of the source distribution on the aerofoil contour, S, m is the
intensity of the doublet distribution on the camberline and wake, S. and Sy, and where

m fp(r) dS (26)
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fs(r) and fp(r) are the Green’s singular functions associated with the source and doublet
distributions defined as

1

fs(r) o Inr, 27

fo(r) = -n-Vfs=-

It

1 n'r
— — 28
2r r2 ° (28)
in which r is the position vector of the point (z,y) where the potential is evaluated with
respect to the source or doublet location, and n is the unit vector normal to the surface
(camberline or wake) containing the doublet distribution.

The actual aerofoil contour and the camberline are then divided in 2N and, respec-
tively, N panels (or boundary elements) along which uniform source distributions, g;, or
linearly-variable doublet distributions, m; + v; s;, are considered. Thus, the potential ¢
evaluated at a control point (z;, ¥;) can be expressed as

2N 1 S;
<P(l'i, yi) = Z q; g / In Tij de
j=1 —-5;

N+1 S,
-1 H
+ Jz::; 2—7r /:Sj (mj +'}’ij) nj A4 (ln T,'J') dSJ‘ s (29)
where
T = \/(:c; —z; —s; cosfBi)? + (v —y; — 55 sinmy)?, (30)
;o= i (z; — x5 — s cosrj)+j (yi —yj —s; sin7y) , (31)

in which z;, y; are the coordinates of the mid-panel points, s; is a local coordinate along
the panel with respect to its midpoint, S; represents the semi-length of the panel and
7; is the panel slope angle with respect to the chordwise axis z; the wake doublet panel,
denoted by j = N + 1, has a uniform doublet distribution and hence TN41 = 0.

The linearly-variable panels can be conveniently replaced by an equivalent system of
uniform vortex panels and concentrated vortices at the panel extremities, according to
the equation

1[5

5 (mj +7; s;)m; -V (In ry;) ds; =
T J_s;

i
= (mj =7 5;) @i —(mj+7; ;) Oujs1+; /S 8;; ds;

(32)
where
1 ¥i—y;+S; sinj
©;; = —tan~! B HT )T
e 27 an T —zx; + Sj €oS 7; ’ (33)
0;; = L tan~! W — 5 ST . (34)
27 Ti—~Z;—5; COST;

One can notice that the contribution of the wake panel (mw = myy; and Yn4y = 0),
reduces to the contribution of a concentrated vortex situated at the trailing edge of the
aerofoil (the other extremity of the wake panel being situated at infinity).
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The boundary conditions are imposed in this basic approach at the midpoints of the
panels situated on the aerofoil contour, and the Kutta condition is implemented at a very
small distance 6 behind the trailing edge on the camberline extension. These provide the
following (2N + 1) boundary conditions

2N N
3.6 Ci+ Y {(mj—v S;)n;-V 6y —(mj +7 Sj)mi -V ©; ;41 + v; Kij)
i=1 i=1

+mN11 0 -V O Ny =Ug sin(n —a), for t=12 ...,2N+1, (35)

where C;; and K;;j are the influence coefficients of the source and vortex panels defined
as

1 S n; - !‘,'j
L= DX g, 36
Cl] o _s; T?J S5 ( )
S 1 S t; -1
K; = [_5. n; -V ;; de=% /_5. "?ids]'. 37
b 3 17

However, the singularities strengths gj» m; and v;, representing (4N + 1) unknowns, are
not uniquely determined by the above (2N + 1) boundary conditions, and hence 2N ad-
ditional conditions have to be imposed to render the problem determined. The following
strategy regarding the additional conditions, as suggested by Hunt [8], is adopted in this
basic approach:

(i) Equal strengths, ¢; = 92N+1-j, are considered for the opposed source panels situ-
ated on the upper and lower surfaces of the aerofoil, assuming that the main réle
of the source panels is to simulate the effect of the aerofoil thickness.

(ii) The slopes of the linearly-variable doublet distributions on the camberline panels
(with the main aim to simulate the effect of the incidence and camber) are defined
as

gy = L

7T S+ Sih

with Syy1 = 0 and yn4; = 0 for the wake panel.

(38)

With these additional conditions, equations (35) can now be solved for the
singularities strengths ¢; and m;. The velocity at the midpoint (z;, ¥) of the panel
i can be expressed, since Vi=t;-Vy as

2N
Vi = U cos(Bi~a)+ 3 ¢ Ty + myys t: -V O, wy

i=t

N
+ D lmi— % S) 6V e — (mj +7955;) t: - V ©u 541 +7; Qi) , (39)
i=1

where

T (40)

il
[
B , =
T
R
k2
ﬂl\,
o
=
=9
h(l:

Qij

Il
-
q
S
Y
[~ 9
.i"

(41)



