' Neural Information

- Processing
ICONIP2001 PROCEEDINGS

VBT 3"
2 ‘;“I’:,fi ;
4 i
’?,_ e 5‘#‘,
1

" International Conference on Neural Information Processi

- .

‘November 14-18, 2001
- Shanghai, China

Volume 1

Edited by Liming Zhang and Faniji Gu

Fudan University Press



8" International Conference on Neural Information Processing

ICONIP2001

Copyright information

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior permission of Fudan University Press.

Fudan University Press
579 Guoquan Rd. Shanghai, 200433, China

(2001 Shanghai International Industrial FAIR Science Technology Forum)



8% International Conference on Neural Information Processing

Greetings From Steering Committee

Dear colleagues:

On behalf of the steering committee of ICONIP2001-Shanghai, I would like to extend to
all the participants the sincerest greetings and warmest welcome.

Thanks to Prof. Amari and Fukushima from Japan, Prof. Wu from China, Prof. Lee from
Korea and many other friends from AP region, ICONIP, earliest initiated during [JICNN1992-
Beijing last century, has been a stable and strong platform for exchanging ideas, sharing
experiences and exploring solutions among the scientists, professors and engineers in neural
networks and the related fields within APNNA family.

The major goal of science and technology, to my understanding, is to find the good
approaches to strengthening the human abilities among which the intelligence is the most
demanding. Many evidences show that neural networks and the mechanisms of neural
information processing would be the promising ones. On the other hand, however, the ever-
made progress, up to the present stage, seems still very far from what ones expected. Hence
there lies a long long way for us to go.

It has been getting more and more clear during the last decades that interdisciplinary
cooperation would be much more effective than any other single disciplinary effort, even as
neural networks, in the exploration of human intelligence as it may be the object with the
highest complexity. As the result, it is a strong suggestion that a multi-disciplinary
cooperation be specially encouraged among neural networks, artificial intelligence, biology,
neurology, cognitive science, information science, knowledge theory, cybernetics, system
theory, computer science, signal processing, and the like.

It is happy to see from the Proceedings of ICONIP2001 that this conference, like the
previous ones, has implemented such multi-disciplinary cooperation. But it seemed not
sufficient yet. It is our hope that more colleagues from various related fields and various
regions in the world get together to make greater progress and more significant contributions
to the human kinds.

Wish ICONIP2001-Shanghai a successful conference, wish the friendship within APNNA
family everlasting, and, above all, wish all participants have an enjoyable and pleasant stay in
Shanghai, China.

Professor Tian-De Shou
Professor Yi-Xin Zhong
Steering Committee Chairs
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Message From The Program Committee

Dear Colleagues:

As Program Committee Chairmen of ICONIP2001, we are deeply honored to welcome
you, our colleagues from all over the world, to the eighth International Conference on Neural
Information Processing in Shanghai, China.

In the past few years, neural networks and biological motivated system have received a
great deal of attention and are being touted one of the greatest computational tools. Many
excitement results are due to the ability of neural networks to imitate the brain. Especially, the
apparent ability to solve complex, noisy, nonlinear information processing problems that are
difficult by other classical methods. It is true that neural information processing and brain
science are closely integrated. The research areas on understanding brain, protecting brain and
creating brain have pushed many scientists and experts in a variety of fields gathering on this
annually meeting to share their ideas and new developments since 1994. It is also a great
honor for China to hold the conference again in the famous and beautiful city, Shanghai.

We received over 300 submissions from more 31 countries and areas. With the help of
renowned reviewers, the committee has selected 295 for oral and poster presentations. These
papers with high scientific qualities, have covered brain model and cognitive science, learning
algorithm, evolution and fuzzy system, neural network architecture, applications on image
and signal processing, data mining, control, knowledge and rule extraction and others. Several
leading scientists have been invited to give plenary presentation and forum talk on conference
and sessions. Some of our colleagues help us to organize high-level mini-workshops and
special sessions and some of our colleagues are also invited to chair the sessions. We deeply
appreciate them for their kind support and help. We also give our thanks to the paper
reviewers. We believed that each reviewer did his or her best to make objective decision
though the review and decision process is never perfect. We apologize for any resulting
disappointment.

Dear colleagues, on behalf of program committee, we would welcome you, the
participants, to the ICONIP2001 and sincerely hope that conference successful!

Professor Aik Guo
Professor Mimory Tsukada
Professor Liming Zhang
Program Committee chairs
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Forty Years of Perceptrons

Shun-ichi Amari

RIKEN Brain Science Institute
Wako-shi, Hirosawa 2-1, Saitama 351-0198, Japan
amari@brain.riken.go.jp

Abstract

More than forty years have passed since a
learning machine called the perceptron was proposed
by Rosenblatt. It has played a major role for these
forty years, not only in the area of computational
neuroscience in elucidating the function of
cerebellum, but also in theoretical and practical
studies of learning machines. The present talk
reviews these developments from my personal point
of view.
1 Perceptron and Its Convergence

Theorem

Perceptron is a model of neural networks having
learning ability. It was proposed by Rosenblatt in
the late fifties, where many types of perceptron were
studied Rosenblatt [31]. They included multilayer
perceptrons having laterally connected and feedback
connected ones, and even a possibility of error

signals backpropagating was stated.

The simple perceptron was studied deeply. It

consists of three layers, the input layer, the
association layer and the output layer. The
connections from the input to the association layers
are randomly assigned so that the perceptron can
perform any tasks universally. The connections
from the association to the output layers are
modifiable, so that it can be trained to perform any

specific task by learning from examples.

The perceptron convergence theorem was proved
by [14] which guarantees that any linearly separable
function can be realized by a simple perceptron by a
finite nunrber of training from examples. The proof
was very complicated, and simpler proofs were given
by Novikov and by Minsky and Papert [27]. The
simple perceptron had been a central topic of research

in the early sixties in the community of learning,
threshold logic and pattern recognition.

Unfortunately, other types of perceptrons were not
well studied, because they were so difficult to
analyze theoretically, and computers at that time were
so poor to do large-scale simulations. Minsky and
Papert [27] studied the capability of the simple
perceptron and condemned that its performance is
severely limited from the point of view of
computational complexity. Their
fundamental and interesting, although the simple
perceptron is too simple as a model of neural parallel
processing. It was said to be unfortunate that the
theory had influence- on the decay of studies of
perceptrons in the seventies. However, this story is
only a myth, and it was not Minsky-Papert paper
(book) that caused the decay of neural nedelling.

theory is

Computers became much more powerful in that
period, and a more practical approach to pattern
recognition as well as the Al type research had
become much more fashionable at that time,
attracting many researchers. However, there were
important developments outside America and Europe
in the late sixties and early seventies, which has not
yet been well recognized. Before describing that story,

a biological impact of perceptron will be stated.
2 Perceptron Theory of Cerebellum

The cerebellum has a well-structured mulitilayer
architecture, which was studied by experimentalists
in the sixties. They asked theoreticians what was
structure theoretically in
information processing. It was Marr [26] who
answered the question, by proposing the perceptron

implied by such a

theory of cerebellum. The mossy fibers were
identified as the inputs to the cerebellum, and the

granular cells receive inputs from mossy fibers by

«P3 .



The granular cells form the

random connections.
association layer, sending signals to the output
Purkinje cells through parallel fibers. These
connections are modifiable, where the teacher signals
are provided from the climbing fibers. A similar
idea was also proposed by Albus [2] independently.

The theory gave an impact to experimentalists, but
it was impossible to prove the idea by experiments at
that time. So most experimentalists were not in
favor of the theory, neglecting its implications, Ito
[22] was one of a few who took the idea seriously,
and designed a thoughtful experimental paradigm to
prove that neural learning in cerebellum takes place
in the synapses of the parallel fibers to the Purkinje
cells, where the teacher signals are supplied from the
climbing fibers. It took ten years of tireless efforts,
before he proved the long term depression taking
place in the connections of the Purkinje cells. Long
term potentiation was found in hippocampus, which
was the first evidence of plasticitic changes in the
brain.  Ito's experiment showed the long term
depression. This not only proved another type of
plastic change in the brain, but more importantly
provided evidence of neural plasticity connected with
the change in the behavior of animals. That is, this
was the first finding that behavioral changes in
mammals are caused by neural plastic changes in
synapses.

This finding shows the importance and
fruitfulness of cooperation between theoretical and
experimental research. However, there have been a
number of experimentalists who were strongly
against Ito's findings. They proposed alternative
ideas of learning against Ito. Whenever their ideas
were disproved, they proposed another one, and such
process has been repeated, in spite that majority has
approved Ito's idea.

3 Stochastic Descent Learning

In the period of the sixties, Widrow [39] proposed
another learning machine called the "adaline”. This
is an adaptive linear neuron, which performs learning
by modifying the connection weights in the direction
of the gradient of the squared error. This is the
origin of the stochastic descent learning method.
The adaline is linear, so that it cannot be generalized

. P4 L

to multilayer nonlinear machines. The perceptron
learning by Rosenblatt was proposed from a
completely different point of view, because it uses
binary neurons to perform logical calculus, so that the
stochastic descent method cannot be applied to

multilayer perceptrons in the original form.

In the late sixties, there were new developments in
learning methods. One is in Russian school.
Aizerman et al [1] proposed the potential function
method of learning, which is a linear machine using
the stochastic descent. Input signals are transformed
nonlinearly so that its capability is universal. This
is an origin of the kernel support vector machine
(Scholkopf et al [34]). Tsypkin [36] applied the
method of stochastic approximation for learning.
Vapnik also proposed the idea of VC dimensions in
relation to the uniform convergence of learning
machines.

Amari [3] studied the dynamic behavior of
learning, and analyzed the relation between the
learning speed and accuracy. To this end, he used
an analog sigmoidal activation function, and
formulated the learning rule in the framework of
stochastic gradient descent. He then applied it to
learning of multilayer perceptrons, which was later
named the delta rule by Rumerhalt et al[32]. Amari
did not find the interesting interpretation that the
error signal backpropagates in multilayer perceptrons,
from which the name of backpropagation came
(Rumerhalt et al [32]).

was more general but the algorithm was essentially

However, his framework
the same as the rediscovered one. Moreover, the
dynamics of online learning, the speed and accuracy,
was analyzed. The same results were rediscovered
later by Heskes and Kappen [20] by statistical
physical method, and became a source of further
research on online learning (Saad [33]). The
adaptive control of the leaming rate was also
suggested in the old paper.

It was strange that all of these works have been
completely forgotten and ignored in the later
developments of neural networks in the eighties.
There was a strong group of machine learning in
Moscow as mentioned, and they were surprised to
find similar research in Japan, because these types of
research were scarce in the US and in Europe at that



time (personal communication by Vapnik). When
Tsypkin [36] wrote a book on pattern recognition and
learning in the seventies, he devoted one chapter to
an introduction of the theory of Amari [3]. See also

(5]
4 New Developments of Perceptron

The (reMiscovery of backpropagation (Rumelhart
et al [32]) was welcomed enthusiastically by the
neural networks community. Computers were
sufficiently matured in this time so that large-scale
simulations were possible. The model "Netalk” by
Sejnowski and Rosenberg {35] was one of the earliest
results which demonstrated the power and usefulness
of the multilayer perceptrons as practical engineering
tools. Although the multilayer perceptron includes
difficulties in slow convergence and existence of
local minima, it has been fully developed to be a
standard engineering tool for a learning pattern
recognizer and has been applied in various fields of

science and engineering,.

Theoretical studies have further been developed

rapidly. It was proved that the three-layer
perceptron is a universal approximator of nonlinear
functions in the sense that any function can be
approximated by it, provided it includes a sufficiently
large number of hidden units (Funahashi [16], Hornik
et al [21]). More surprisingly, it was proved by

Jones [23] and by Barron {13] that the multilayer

perceptron is free from the "curse of dimensionality".

In conventional methods of function approximation,
when the dimensions of the input signals are large,
the number of parameters to be adjusted for
approximating a nonlinear function of inputs signals
increases exponentially. However, when a function
to be approximated is smooth, the number does not
increase exponentially in the case of perceptrons,
implying that the perceptron is free from the curse of
dimensionality. This surprising result was proved
by the information-theoretic method.

There have been developed statistical (Amari and
Murata [9]) as well as statistical physical theories of
learning in such machines (Levin et al [24]; Saad

(33D

The relation between training erfor and

generalization error was elucidated by these methods.

Bayesian theories and the regularization theory were

also developed (MacKay [25]: Poggio and Girosi
[29]). Vapnik used the theory of uniform
convergence to develop a statistical learning theory,
which elucidated the relation between training error
and generalization error from a more fundamental
point of view. This resulted in the proposal of the
support vector machines and kernel support vector
machines, which have a strong power in pattern
recognition and nonlinear regression. Bagging and
boosting methods came from a different statistical
viewpoint, which overcomes the problem of local

Machine learning has become a large
interdisciplinary area of research where neural
networks, recognition  [34], artificial
intelligence, statistics, statistical physics and many

other disciplines are merged.

pattern

5 Information Geometry of Multilayer
Perceptrons

Information geometry (Amari and Nagaoka [10])
originated from the study of intrinsic properties
existing in the manifold of probability distributions.
It has successfully been applied not only to the theory
of statistical inference but aiso in many other fields
such as information theory [18], control systems
theory [4] and neural networks [8], signal processing
such as independent component analysis [7]. In
particular,
perceptrons has been developed, which opened a way

information geometry of multilayer

to new interesting aspects of hierarchical systems
including multilayer perceptrons.

The set of multilayer perceptrons forms a
geometrical manifold where the set of modifiable
parameters (connection weights and thresholds) play
the role of a coordinate system. When learning
takes place, it is represented by a trajectory in the
manifold. By taking the noise into account, the
behavior of a perceptron is described by a conditional
probability distribution of the output conditioned on
the input. Hence, the parameter space of
perceptrons, which we call the neuromanifold,
of conditional probability

consists of a set

distributions, which is a topic elucidated by

information geometry.

oPSo



The neuromanifold is a Riemannian manifold
havinig the Fisher information matrix as its metric
When such a structure is taken into
account, the conventional gradient should be replaced
by the Riemannian gradient or natural gradient
(Amari [6]). If the neuromanifold is not so strongly
curved, there are only small difference between the

structure.

conventional and the natural gradients. However,
because of the symmetry existing in such hierarchical
systems, it is strongly curved. Moreover, it includes
Fisher  information

singularitiecs  where  the

degenerates.

It was shown that the plateau phenomena by
which perceptron learning becomes very slow are

given rise to by such singular geometrical structures.

Amari proposed natural gradient leaming to
overcome this difficulty. However, the calculation
of the inverse of the Fisher information matrix
seemed rather difficult. This difficulty was
overcome by the adaptive natural gradient method
(Amari et al [12], Park et al [28]).
show its extremely quick convergence ability in
learning. Statistical  physical analysis also

confirmed this (Rattray et al [30]).

Simulations

The success of the natural gradient learning
method posed another interesting questions: How a
learning trajectory is affected by such singularities?
(Amari and Ozeki [11]) More generally, we need to
elucidate learning and statistical inference in the
in neuromanifolds or
Watanabe [38] used

presence of singularities
statistical models in general.

modern algebraic geometry to elucidate this problem.

This is now a very important new topic of research,
developed by a number of Japanese researchers [15],
[17), [19].

6 Conclusions

The present paper reviewed forty years of
developments of perceptrons. It is interesting to see
that the concept of perceptrons generated a lot of new
ideas, including biological, theoretical and practical
applications throughout forty years. It is stll a

source of new ideas.
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Modulation of Visual Information Processing
Through Various Retinal Signal Channels

Xiong-Li Yang

Institute of Neurobiology, Fudan University
220 Han-Dan Road, Shanghai 200433, China

Abstract

The vertebrate retina, an approachable part of the brain, is composed of just six basic nerve
cells, which are organized into several clearly distinct cellular layers, thus providing a good
model for exploring the mechanisms underlying brain function. It has long been recognized that
there are parallel streams of preprocessed information passing from the retina to the brain for
higher perceptual processing, via a variety of channels for visual contrast, visual adaptation, color,
special frequency. In this lecture, general principles of signal transfer along the channels in the
retina will be summarized and the data will be presented to demonstrate how the transmission
through the “red-cone” channel, the chromatic channel and the “on-off” channel is modulated by
darkness, illumination and a variety of chemicals, including neurotransmitters and
neuromodulators. Possible mechanisms underlying the modulation and hints to neuroscientists,
working in the field of neural network and nervous system modeling which these studies may
provide are discussed as well.
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FINDING STRUCTURE IN SIGNALS, IMAGES, AND DATA

Erkki Oja

Helsinki University of Technology
Neural Networks Research Centre
P.O. Box 5400, FIN-02015 HUT, Finland
erkki.oja@hut.fi

ABSTRACT

The talk will be a tutorial survey, concentrating on the
main principles and categories of unsupervised neural learn-
ing in the problem of data mining for signals, images, and
data. In neural computation, there are two classical cate-
gories for unsupervised learning methods and models: first,
extensions of Principal Component Analysis and Factor Anal-
ysis, and second, learning vector coding or clustering meth-
ods that are based on competitive learning. The talk con-
centrates on two of these extensions: for the first category,
the novel technique of Independent Component Analysis,
and for the second category, the Kohonen Self-Organizing
Map. The more recent trend in unsupervised learning is to
consider this problem in the framework of probabilistic gen-
erative models. If it is possible to build and estimate a model
that explains the data in terms of some latent variables, key
insights may be obtained into the true nature and structure
of the data. This approach is also briefly reviewed. After a
brief introduction to the underlying theoretical foundations
of these ideas, unsupervised neural learning will be iflus-
trated by several applications in data mining ranging from
document and pictorial databases to blind signal separation.

Keywords unsupervised learning, data mining, indepen-
dent component analysis, self-organizing map
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1. INTRODUCTION

Progress in computer and information sciences was for a
long time restricted by the state-of-the-art of computer hard-
ware and data networks. In recent years a new situation
has been encountered: the worldwide proliferation of pow-
erful computing services has caused an uncontrolled flood

of information in the Internet and other media. It therefore
becomes increasingly important to develop fundamentally
new information processing principles for making relevant
knowledge accessible to the user and to present it in a com-
prehensible form. This means, for example, completely new
explorative data analysis and data mining methods, com-
bined with advanced graphics facilities.

Along with the explosive increase in available digital
data, the computing power of modern hardware has been
dramatically increased as well. With the increasing com-
puting power, it has become possible to digitally process
and classify huge masses of natural data, such as statisti-
cal information, images, speech, text, as well as other kinds
of signals and measurements coming from very different
sources. Such tasks occur in industry, remote sensing, me-
dicine, finance, and natural sciences, to mention only a few
main fields. For financial, medical, administrative, and other
databases, one needs efficient tools for visualization, predic-
tion, clustering, and profiling. In industrial problems, it is
essential to build empirical data based models of complex
systems in order to be able to predict, monitor, diagnose
faults, and control the systems.

One of the central tools in data mining is unsupervised
learning. This means a completely data driven approach in
which the pertinent structure, in the form of patterns, clus-
ters, or models, is automatically found from the data using
advanced statistical and computational techniques. Some
insight into the unsupervised learning problem can be in-
ferred from cognitive science. It is obvious that many effec-
tive computing principles that we do not yet know in detail
exist in the biological brain. For example, many hierarchical
computing structures of the brain have still remained a mys-
tery. On the other hand, the mathematical operations and
expressions that we use for the description of known neu-
ral operations can be computed digitally with much higher
accuracy and stability than what is possible by the analog
computing principles of the biological networks. Therefore,
trying to combine the best of these two worlds is a strong
motivation, emerging in the research field of neural compu-
tation. This can be seen as being situated at the intersection
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of machine learning, computation, and advanced statistics.

The Section 2 of this paper reviews the three main ap-
proaches to unsupervised machine learning in neural net-
works. Then, Section 3 illustrates these approaches by some
weli-known concrete mathematical models. Section 4 men-
tions some applications that will be covered in detail in the
talk.

This paper is based on the more extensive review (Oja,
2001).

2. WHAT IS UNSUPERVISED LEARNING

Unsupervised learning is a deep concept that can be ap-
proached from very different perspectives, from psychol-
ogy and cognitive science to engineering. It is often called
"learning without a teacher”. This implies that a learning
human, animal, or artificial system observes its surround-
ings and, based on these observations, adapts its behav-
ior without being told how to associate given observations
to given desired responses (supervised leaming) or without
even given any hints about the goodness of a given response
(reinforcement learning). Usually, the result of unsuper-
vised learning is a new explanation or representation of the
observation data, which will then lead to improved future
responses or decisions (Hinton and Sejnowski, 1999). This
is precisely the problem in data mining, t0o.

In machine learning and artificial intelligence, such a
representation is a set of concepts and rules between these
concepts, which give a symbolic explanation for the data. In
advanced statistics, the representation may be a clustering of
the data, a discrete map, or a continuous lower-dimensional
manifold in the vector space of observations, which explains
their structure and may reveal their underlying causes.

Unsupervised learning seems to be the basic mechanism
for sensory adaptation e.g. in the visual pathway (Barlow,
1989). If we accept the hypothesis that biological learning
is based on synaptic modification, a big problem is how su-
pervised learning rules like back-propagation could be im-
plemented locally on the synaptic level. The biological sub-
strate seems to be much more compatible with the unsu-
pervised mode of learning. For more biologically oriented
neural approaches, see (Grossberg, 1988). On the engineer-
ing side, unsupervised learmning is a highly powerful and
promising approach to some practical data processing prob-
lems like data mining and knowledge discovery from very
large databases, or new modes of human-computer interac-
tions in which the software adapts to the requirements and
habits of the human user by observing her behaviour.
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3. EXAMPLES OF UNSUPERVISED LEARNING IN
NEURAL COMPUTATION

In neural computation, there have been two classical cate-
gories for unsupervised learning methods and models: first,
extensions of Principal Component Analysis and Factor Anal-
ysis, and second, learning vector coding or clustering meth-
ods that are based on competitive learning (Haykin, 1999).
The more recent trend in unsupervised machine learning is
to consider this problem in the. framework of probabilistic
generative models (Hinton and Sejnowski, 1999). If it is
possible to build and estimate a model that explains the data
in terms of some latent variables, key insights may be ob-
tained into the true nature and structure of the data. Oper-
ations like prediction and compression become easier and
rigorously justifiable.

3.1. The Self-Organizing Map

The goal of unsupervised learning, finding a new compressed
representation for the observations, can be interpreted as
coding of the data. Thus learning vector coding methods
that are based on competitive lcarhing can be highly use-
ful. A typical application is data mining or profiling from
massive databases. It is of interest (o find out what kind of
typical clusters there are among the data records. In a cus-
tomer profiling application, finding the clusters from a large
customer database means more sharply targeted marketing
with less cost. In process modelling, finding the relevant
clusters of the process state vector in real operation helps in
diagnosis and control. A competitive learning neural net-
work gives an efficient solution to this problem. The best-
known competitive learning network is the Self-Organizing
Map (SOM) introduced by Kohonen (see Kohonen, 2001).

In vector coding, the problem is to place a fixed num-
ber of vectors, called codewords, into the input space which
is usually a high-dimensional vector space. The input data
(observations) are given as a training set of numerical vec-
tors x(1),...,x(T"). For example, the inputs can be gray-
scale windows from a digital image, measurements from a
machine or an industrial process, financial data describing
a company or a customer, or pieces of English text repre-
sented by word histograms. The dimension n of the data
vectors is determined by the problem and can be very large.
In the WEBSOM system for organizing collections of text
documents (Kohonen et al, 2000), the dimensionality of the
data in the largest applications is about n = 50, 000 and the
size of the training sample is about T' = 7, 000, 000.

The goal of SOM learning is not only to find the most
representative code vectors for the input training set in the
sense of minimum distance, as is the case in the usual vec-
tor coding methods, but at the same time to form a topo-
logical mapping from the input space to the grid or lattice
of neurons. This idea originally stems from the modelling



of the topographic maps on the sensory cortical areas of the
brain. A related early work in neural modelling is (Mals-
burg, 1973).

For any data point x in the input space, one or several
of the codewords are closest to it. Assume that w; is the
closest among all codewords:

lIx = w;|l = min||x - w;|l,j =1,...,k (6))]

The unit ¢ having the weight vector w; is then called the
best-matching unit (BMU) for vector x. Note that for fixed
x, Eq. (1) defines the index ¢ = #(x) of the BMU, and for
fixed 4, Eq. (1) defines the set of points x that are mapped
to that index and thus all belong to the same cluster. By
the above relation, the input vectors x are mapped to the
discrete set of indeces 1.

By a topological mapping the following property is meant:
if a given point x is mapped to unit 4, then all points in
neighborhoods of x are mapped either to ¢ itself or to one
of the unmits in the neighborhood of 4 in the lattice. Be-
cause no topological maps between two spaces of differ-
ent dimensions can exist in the strict mathematical sense,
a two-dimensional neural layer can only follow locally two
dimensions of the multidimensional input space. Usually
the input space has a much higher dimension, but the data
cloud x(1), ..., x(T') used in training may be roughly con-
centrated on a lower-dimensional manifold that the map is
able to follow at least approximately (Kohonen, 2001). The
well-known Kohonen learning rule is able to tune the map
so that weight vectors attain optimal positions. For recent
advances on the SOM, see (Oja and Kaski, 1999).

3.2. PCA, ICA, and FA

The other class of unsupervised learning methods is moti-
vated by standard statistical methods like Principal Compo-
nent Analysis (PCA) or Factor Analysis (FA), which give a
reduced subset of linear combinations of the original input
variables. A classical approach are the on-line PCA learning
rules introduced by the author (Oja, 1982). As an example,
consider here Factor Analysis (see e.g. Harman, 1967).

In FA, a generative latent variable model is assumed for
the observation vectors x:

x = Ay +n. )

FA was originally developed in social sciences and psychol-
ogy. In these disciplines, the researchers want to find rele-
vant and meaningful factors that explain observed results.
The interpretation in the model (2) is that the elements of
y are the unobservable factors. The elements a;; of the un-
known matrix A are called factor loadings. The elements of
the unknown additive term n are called specific factors. The
clements of y (the factors) are uncorrelated, zero mean and

gaussian, and their variances are absorbed into the matrix A
so that we may assume

E{yy"} =1 )

The elements of vector n are zero mean, uncorrelated with
each other and also with the factors y;; denote Q = E{nnT}.
It is a diagonal matrix. We may write the covariance matrix
of the observations from (2) as

E{xxT} =C, = AAT + Q. @

In practice, we have a good estimate of Cy available,
given by the sample covariance matrix. The main problem
is then to solve the matrix A of factor loadings and the di-
agonal covariance matrix Q such that they will explain the
observed covariances from (4). There is no closed-form
analytic solution for A and Q. Assuming Q is known or
can be estimated, we can solve A from AAT = C, — Q.
This solution is not unique, however: any matrix A’ = AT
where T is an orthogonal matrix (TTT = TI) will also be a
solution. Then the factors will change to y' = TTy. For
A’ and y’, the FA model (2) holds, and the elements of
y' are still uncorrelated. The reason is that the property of
uncorrelatedness is invariant to orthogonal transformations
(rotations). Note that because the factors are uncorrelated
and gaussian, they are also independent.

In Independent Component Analysis (ICA) (see e.g Amari,
1996; Bell and Sejnowski, 1995; Cardoso, 1998; Hyviri-
nen, Karhunen and Oja, 2001; Jutten, 1991), the same model
(2) is assumed, but now the assumption on y; is much stronger:
we require that they are statistically independent and non-
gaussian. Interestingly, then the ambiguity in Factor Anal-
ysis disappears and the solution, if we can find one, is (al-
most) unique.

In the simplest form of ICA, the additive noise n is not
included and the standard notation for the independent com-
ponents or sources is 8;; thus the ICA model for observation
vectors x is

x = As. (&)

It is again assumed that both x and s are zero mean. The ob-
servations z; are now linear combinations or mixtures of the
sources s;. The matrix A is called in ICA the mixing matrix.
In a typical application of ICA, a set of parallel time signals
such as speech waveforms, electromagnetic measurements
from the brain, or financial time series, are assumed to be
linear combinations of underlying independent latent vari-
ables. The variables, which are now the independent com-
ponents, are found by efficient ICA learning rules,

A recent survey on ICA is (Hyvirinen, Karhunen and
Oja, 2001) that also contains an extensive list of citations to
the original literature.
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3.3. Nonlinear Generative Models

The concept of a generative model is very general and po-
tentially powerful. In fact, as discussed by (Roweis and
Ghahramani, 1999), a large number of central techniques
like FA, PCA, ICA, mixtures of Gaussians, vector quantiza-
tion, and also dynamical models like Kalman filters or Hid-
den Markov Models, can be presented in a unified frame-
work of unsupervised learning under a single basic genera-
tive model. In the Bayesian Ying - Yang model (Xu 2000),
likewise a generic framework of unsupervised learning is
employed for the basic data models, both static and tempo-
ral.

We already saw examples of generative models in the
case of Factor Analysis and Independent Component Anal-
ysis. Also Principal Component Analysis can be derived
from a generative model in the technique called Probabilis-
tic PCA (Tipping and Bishop, 1999). A problem with such
linear models, however, is that they cannot represent well
data that is not a linear mixture of some underlying gaus-
sian or nongaussian variables. For data clouds that have an
irregular or curved shape, these methods fail.

In the Generative Topographic Map (GTM) algorithm
(Bishop er al, 1998), the observation vectors x are expressed
in terms of a number of latent variables, which are defined
on a similar lattice or grid as the neurons in the SOM. The
mapping from the latent variables to the observations is non-
linear:

x=f(y,M)+n ©)

where M is an array of parameters of the nonlinear func-
tion f, and n is additive noise. The form of the function f is
assumed to be determined except for the unknown parame-
ters. The model (6) is the generative latent variable model
of the GTM method. It means that the observed data vectors
x are basically concentrated on a lower dimensional nonlin-
car manifold in the data space, except for the additive noise.
The vectors w; = f(y;, M) that are the images of the node
points y; are analogous to the weight vectors or codewords
of the SOM. If f is smooth, a topographic ordering for the
codewords is automatically guaranteed, if such an ordering
is valid for the latent points y;. The GTM also has the ad-
vantage that it postulates a smooth manifold that naturally
interpolates between the code vectors w;. The parameters
can be learned using the EM algorithm,

When comparing the FA model (2) and the GTM model
(6), certain similarities emerge: both have a number of la-
tent variables, given by the vector y, and additive gaussian
noise n. In FA, the mapping from y to the data x is linear,
in GTM it is nonlinear. Another clear difference is that in
FA, the factors are gaussian, while in GTM, the prior den-
sity p(y) for the latent factors has a very special (atomic)
form.

Another possibility for this density in the nonlinear case,
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too, would be the gaussian density, which would then be
close to the original flavor of FA. If we assume that the prior
for y is gaussian with unit (or diagonal) covariance, making
the elements y; independent, as in eq. (3), then the model
(6) may be called nonlinear factor analysis. A further ex-
tension would be p(y) that is nongaussian but factorizable
so that the y; are independent; then the model becomes non-
linear independent component analysis.

Recently, (Valpola, 2000) used an approximation for the
nonlinear function f(y, M) in the model, that was based
on a Multilayer Perceptron (MLP) network with one hidden
layer. It is well-known (see e.g. Haykin, 1998) that this
function can approximate uniformly any continuous func-
tions on compact input domains and it is therefore suitable
for this task. Then the model becomes

x=B¢(Ay+a)+b+n @)

where A, a are the weight matrix and offset vector of the
hidden layer, ¢ is the sigmoidal nonlinearity, typically a
tanh or sinh™! function, and B, b are the weight matrix
and offset vector of the linear output layer. It is understood
that ¢ is applied to its argument vector element by element.
In practice, there is a training sample x(1), ..., x(T’), and
we wish to solve from the model the corresponding source
or factor vectors y(1), ..., y(T).

The problem now is that, contrary to the usual super-
vised learning situations, the inputs to the MLP are not known
and therefore back-propagation type of learning rules can-
not be used for finding the unknown parameters. The idea
in (Valpola, 2000) is to use a purely Bayesian approach
called ensemble learning. The cost function is the Kullback
- Leibler divergence between the true posterior probability
for the parameters, given the observations, and an approx-
imation of that density. Several applications with real data
have ben shown. The model has also been extended to a
dynamical model, similar to an extended Kalman filter but
with unknown parameters, and very promising results are
obtained in case studies.

4. APPLICATIONS

The talk will be an introductory survey, concentrating on
the main principles and categories of unsupervised learning.
In the talk, the theoretical foundations of unsupervised ma-
chine learning will be shortly reviewed and the techniques
will be illustrated by several applications in data mining:
finding relevant documents in large document collections,
content-based image retrieval, finding structure in biomed-
ical measurements, and finding hidden nonlinear factors in
time series. For more information and references, see the
Web pages (NNRC, 2001).
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