Ordinary Differential Equations
with Modern Applications

THIRD EDITION

N. Finizio and G. Ladas



Ordinary Differential Equations
with Modern Applications

THIRD EDITICN

N. Finizio and G. Ladas
University of Rhode Island

Wadsworth Publishing Company
Belmont, California

A division of Wadsworth, Inc.



Mathematics Development Editor: Anne Scanlan-Rohrer
Mathematics Assistant Editor: Barbara Holland
Editorial Assistant: Sally Uchizono

Cover:. Vargas/Williams/Design

Signing Representative: Richard Giggey -

© 1989, 1982 by Wadsworth, Inc.

© 1978 by Wadsworth Pbbljshigk Combany, Inc Al rights

reserved. No part of this bodRPrpdy be reproduced, stared in a
retrieval system, or transéribed, in any form or by any means,
electronic, mechanical, photdcpplying, recording, or otherwise,
without the prior written persugsyon of the_publisher, Wadsworth
Publishing Company, Betmogt, Calitorta #4002, a division of
Wadsworth, Inc. - L

Printed in the United Statgs Of¥Asherica

123456789 10493 93 91 96 89

Library of Congress Catdloging in Publication Data

Finizio, N.
Ordinary differential equations with modern applications.
Includes index.
1. Differential equations. . Ladas. G. E.

IL. Title.

QA372.F56 1989 515.3'52 88-10780

ISBN 0-534-09216-0 AACR2



Preface

Thls book is intended for an mtroductory course in ordmary dlfferennal equauons
Its prerequisite is elementary calculus.

. Perusal of the table of conterits and the list of apphcatlons shows that the book
contains the theory, wchmqucs ‘and appli¢ations covered in the traditional intro-
ductory courses in ordinary differential equations. A major feature of this text is

* the quantity and variety of applications. of current interest in physical, biological,

and socjal sciences. We have furnished a wealth of applications from such diverse
+fields as astronomy, bioengineering, biology, botany, chemistry, ecology, econom-

. ics, electric circyits, findnce, geometry, mechanics, medicine, meteorology, phar-

macology, physics, psychology, seismology, sociology, and statistics.

Our expérience gained in teaching ordinary differential equations on the ele-

mentary, intermediate, and graduate levels at the University of Rhode Island con-
vinced us of the need for a book at the elementary level which emphasizes to the
students the, relevance of the various equations that they are exposed to in the

course. That is to say-that the various types of differential equations encountered

occur in the course of scientific mvestlganons of real-world phenomena.
The goal of this book, then, is to make elementary ordinary differential equa-

tions mare useful, more meamngful and more exciting to the student. To accom- _

plish this, we strive to demonstrate that ordinary differential equations are very
~much “alive”. in present-day applicatiogs. This approach has indeed had a satis-
. fying effect in the courses we have taught recently.

During the preparation and class testing of this text we continuously kept in
mind both the student and the teacher. We have tried to make the presentation
direct, yet informal. Definitions and thecrems are stated precisely and rigorously,
but theory ahd rigor have been minimized in favor of comprehension of technique.
The general approach is to use a large number of routine examples to illustrate the
new concepts, definitions, methods of solutiop, and theorems. Thus, it is intended
that the material will be easily accessible to the student. The presence of modern
applications in addition to the traditional apphcauons of geometry, physics, and
chemistry should be xefreshmg to.the teacher.

Numerous routine exercises in each section will help to test and strengﬂlcn the

student’s understandmg of the new methods-under discussion. There are over 1200

oxercises in ‘the text with answers to gdd-numbered exercisés provided. Some -

: thought-pmvokmg exercises from The American Mathematical Monthly, Mathe-
- matics Magazme, and The William Lowell Putham Mathematics Competition are
inserted in many gections, ‘with references to the source. These should challenge
. the students and help to train them in searching the lishrature.

Review exercises appear at the end of every chw T‘me exercises will help

.6‘
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the studend review material presented in the chapter. Some of the review exercises
have been taken directly from physics and engineering textbooks, in order to fur-
ther emphasize that differential equations are very much present in applications
and that the student 1y guite apt to encounter them in areas other than mathematics.

Everv tyne of differential equation studied and every method presented is illus
trated by real-hite applications which are incorporated in the same section (o1 chap
ter) with the specitic equation or method. Thus, the students will see immediath
the importance of each tvpe of differential equation that thev leara T o wolve
We feel thut these "nicdern” applications. even if the student only giaives ai soine
of them, wili heip to stimulate interest and enthusiasm toward the subject of dif-
ferenital equations specifically and mathematics in general. Every application is
ntended to iilustrate the relevance of difterential equations outside of their intrin-
sic value as matheraatical topics.

Many of the applications are integrated into the main development of ideas.
s blending theory. technique. and application. Frequently. the mathematical
model undertying the application is developed in great detail. It would be tmpos-
sible in u text of this nature to have such development for every application cited.
Therefore, some of the applications are presented in considerable detail and some
with littic v no detail, as indicated in the list of applications. In practically all
cases, references are given for the source of the model. Additionally, a large num-
per of applications appear in the exercises; these applications are also sujtablv
referenced. Consequently, applications are widespread throughout the book. and
aithough they vary in depth and difficulty, they should be diverse and interesting
enough to whet the appetite of every reader. We suggest that the instructor present
only a few of the applications, while the rest will indicate to the student the rele-
vance of differential equations in real-life situations.

In this Third Edition we have added to Chapter | a section on an elementary nu-
merical method—Euler’s method—in accordance with an increasing desire on the
part of instructors to show students, early in the course, how to solve differential
equations rumerically. Along the same lines we have added computer exercises to
Chapter 7, “Numerical Solutions of Differential Equations,” so students can use
the new technology in sclving differential equations numerically. In addition, we
have added new applications and applications-oriented exercises, incorporating
topics in the sciences that have been prominent in recent years. We have also added
more routine exercises to sections of the text where students need more drill.

This book contains adequate material for a two-semester course in differential
equations. For a one-semester course we usually cover the following sections (in
this list B stands for a brief discussion of the section and D stands for a detailed pre-
sentation): L.1(B}. 1.1.1(B). 1.2(B), 1.3(D), 1.3.1(B), 1.4(D), 1.4.1(B), 1.7(B),
L7. 1B}, 1.8(D), 2.1(B), 2.1.1(B), 2.2(D), 2.3(B). 2.4(D), 2.5(D), 2.6(B),
2Dy, 2.8(D), 2.10(D), 2.11(D). 2.12(D), 3.1(B), 3.1.1(B), 3.2(D), 3.3(B),
4.2(D), 4.3(D). 5.2(B), 5.3(D), 5.4D), 5.5(B), 6.1(B), 6.2(D), 7.3(B). For a
one-quarter course the following sections are suggested: 1.1(B), 1.1.1(B), 1.2(B).

3. 1.3.1(B), 1 4Dy, 1.4.1(B). 1.7(B), 1.7.1(B). 1.8(D). 2.1(B). 2.1.1(B),
24Dy, 2 3(B), 2.4D). 2.5(D), 2.6(B), 2.10(D), 2.11(D), 3.1(B), 3.1.1(B),
3.200). 5. 28, 3.3(Dy, 5.4(D).



Preface

A special word of gratitude goes to Professors Gerald Bradley, John Haddock,
Thomas Hallam, Ken Kalmanson, Gordon McLeod, and David Wend, who pains-
takingly reviewed the original manuscript and offered numerous valuable sugges-
tions for its improvement.

Thanks are also due to Lynnell Stern, Professor Clement McCalla, and to our
students Carl Bender, Thomas Buonanno, Michael Fascitelli, and especially Neal
Jamnik, Nagaraj Rao, and Brian McCartin, who proofread parts of the material
and doublechecked the solutions to some of the exercises.

We would like to thank the following reviewers of previous editions for their
helpful comments: Martin Billik, David Callan, Theodore Cullen, Gary L. Eerkes,
Paul A. Haeder, N. Jhunjhunwala, David A. Smith, Bruce Swenson, William
Voxmen, D. D. Weddington, and H. C. Wiser. We would also like to thank the
following reviewers of the current edition: John Duddy, DePaul University;
Laurene Fausett, Florida Institute of Technology; Jackie Garner, Louisiana Tech
University; F. Haring, North Dakota State University; Robert F. Hegarty, Rock-
hurst College; Charles Miller, Foothill College; Carolyn Narasimhan, DePaul Uni-
versity; George W. Schultz, Saint Petershurg Junior College; Thomas L. Vickrey,
Middle Tennessee State University; Fdythe P. Woodruff, Trenton State College.

We are especially appreciative of the constant encouragement and friendly as-
sistance that we received from Anne Scanlan-Rohrer, Mathematics Editor of Wads-
worth Publishing Company, and former editors Donald Dellen, Richard Jones, and
James Harrison.

N. Finizio
G. Ladas

Xiii



Contents

1 ELEMENTARY METHODS—FIRST-ORDER DIFFERENTIAL

EQUATIONS

1.1 Introduction and Definitions 1
1.1.1  Mathematical Models 3
1.2 Existence and Uniqueness 12
1.3 Variables Separable 19
1.3.1 Applications » 21
1.4 First-Order Linear Differential Equations 32
1.4.1  Applications 36
15 Exact Differential Equations 44
1.5.1 Application ) 49
1.6 Homogeneous Equations . 54
1.6.1  Application 56
1.7 Equations Reducible to First Order 59
1.7.1  Application 61
1.8 An Elementary Numerical Method—Euler’'s Method 63

) Review Exercises 70

!2 LINEAR DIFFERENTIAL EQUATIONS

2.1 Introduction and Definitions . 77
2.1.1  Applications 78
2.2 Linear independence and Wronskians 85
23 Existence and Uniqueness of Solutions 94
24 Homogeneous Differential Equations with Constant Coefficients—

The Characteristic Equation 100
25 Homogeneous Differential Equations with Constant Coefficients—

The General Solution ‘ 105
2.5.1 Application 110
26 Homogeneous Equations with Variable Coefficients—

Overview 115
27 Euler Differential Equaticn 116
28 Reduction of Order 121

2.8.1 Applications 125



Contents

29 Solutions of Linear Homogeneous Differential Equations

by the Method of Taylor Series 129
2.10 Nonhomogeneous Differential Equations 133
2.11  The Method of Undetermined Coefficients 137
2.11.1 Applications 142
2.12  Variation of Parameters 149

Review Exercises 154
3 LINEAR SYSTEMS
3.1 Introduction and Basic Theory 161
3.1 Applications 167
3.2 The Method of Elimination 176
3.2.1  Applications 180
3.3 The Matrix Method 185
3.3.1 Nonhomogeneous Systems-—-Variation of Parameters 196
3.3.2 Applications 198

Review Exercises 202
4 THE LAPLACE TRANSFORM
4.1 Introduction 206
4.2 The Laplace: Transform and Its Properties 206
43 The Laplace Transform Applied to Differential Equation

and Systems ' 216
4.4 The Unit S&p Function 224
45 The Unit Impulse Function 228
46 Applications 232

Review Exercises 239
5 SERIES SOLUTIONS OF SECOND-ORDER LINEAR EQUATIONS
5.1 Introduction 242
52 Review of Power Series 243
53 Ordinary Points and Singular Points 247
5.4 Power-Series Solutions about an Ordinary Point 250
5.4.1 Applications 256
55 Series Solutions about a Regular Singular Point 264
55.1 Applications 276

Review Exercises

284



Contents

6 BOUNDARY VALUE PROBLEMS

6.1 Introduction and Solution of Boundary Value Problems . 287

6.1.1 Applications _ S : 291

6.2 . Eigenvalues and Eigenfunctions 294

6.2.1 Application 299
Review Exercises 303

NUMERICAL SOLUTIONS OF DIFFERENTIAL EQUATIONS

71
7.2
7.3
74
75

Introduction 304
Taylor-Series Method 304
Runge-Kutta Methods ' 309
Systems of First-Order Differential Equations 316
Applications 322

Review Exercises 326

NONLINEAR DIFFERENTIAL EQUATIONS AND SYSTEMS

8.1
8.2
8.3
8.4
85
8.6

Introduction 329
Existence and Uniqueness Theorems 329
Solutions and Trajectories of Autonomous Systems 331
Stability of Critical Points of Autonomous Systems . 335
Phase Portraits of Autonomous Systems 341
Applications ' 351
Review Exercises 360
" APPENDIX A
DETERMINANTS AND LINEAR SYSTEMS OF EQUATIONS AP-1
APPENDIX B
PARTIAL-FRACTION DECOMPOSITION AP-12
APPENDIX C
SOLUTIONS OF POLYNOMIAL EQUATIONS AP-17
APPENDIX D

PROOF OF THE EXIST:ENCE AND UNIQUENESS THEOREM AP-20
ANSWERS TO ODD-NUMBERED EXERCISES AS-1

INDEX IN-1



CHAPTER 1

Elementary Methods—
First-Order Differential Equations

1 1 INTRODUCTION AND DEFINITIONS

Differential equations are equations that involve derivatives of some unknown
function(s). Although such equations should probably be called ‘“derivative
equations,” the term “differential equations” (aequatio differentialis) initiated
by Leibniz in 1676 is universally used. For example, ‘

y +xy=3 1)
y' + 5y’ + 6y =cosx 2)
Y =Q0Q +y) +y) 3

Pu  u

— e T = 4

it ax? 0 “)

are differential equations. In Eqs. (1)}-(3) the unknown function is represented
by y and is assumed to be a function of the single independent variable x, that
is, y = y(x). The argument x in y(x) (and its derivatives) is usually suppressed
for notational simplicity. The terms y’ and y” in Eqgs. (1)(3) are the first and
second derivatives, respectively, of the function y(x) with respect to x. In Eq.
(4) the unknown function u is assumed to be a function of the two independent
variables ¢ and x, that is, u = u(t, x), 3*u/dr and 3*w/dx* are the second partial
derivatives of the function u(t, x) with respect to r and x, respectively. Equation
(4) involves partial derivatives and is a partial differential equation. Equations
(1)-(3) involve ordinary derivatives and are ordinary differential equations.

In this book we are primarily interested in studying ordinary differential
equations.

DEFINITION 1

An ordinary differential equation of order n is an equation that is, or can be put,
in the form

Y = Flx,y,y', . ... y" "), (5)

where y,y', . . ., V' are all evaluated at x.



1 Elementary Methods-—First-Order Differential Equations

The independent variable x belongs to some interval / (I may be finite or
infinite), the function Fis given, and the function y = y(x) is unknown. For the
most part the functions F and y will be real valued. Thus, Eq. (1) is an ordinary
differential equation of order 1 and Egs. (2) and (3) are ordinary differential
equations of order 2.

DEFINITION 2

A solution of the ordinary differential equation (5) is a function y(x) defined over
a subinterval J C I which satisfies Eq. (5) identically over the interval J.

Clearly, any solution y(x) of Eq. (5) should have the following properties:

1. y should have derivatives at least up to order n in the interval J.

2. For every x in J the point (x,y(x),y'(x), . . . , ¥ U(x)) should lie in the
domain of definition of the function F, that is, F should be defined at this point.

3. y"(x) = Fx,y(x),y'(x), . . ., y"9(x)) for every x in J.

As an illustration we note that the function y(x) = e* is a solution of the
second-order ordinary differential equation y” — y = 0. In fact.

Y(®) —yx) = (&) —e=¢ - =0.

Clearly, ¢ is a solution of y* — y = 0 valid for all x in the interval
(—, +®). As another example, the function y(x) = cos x is a solution of
¥" + y = 0 over the interval (—x, +x). Indeed,

y'(x) + y(x) = (cosx)" + cosx = —cosx + cosx = 0.

In each of the illustrations the solution is valid on the whole real line (—, + ),
On the other hand, y = Vx is a solution of the first-order ordinary differential
equation y’ = 1/2y valid only in the interval (0, +*)andy = Vx(1 — x) is a
solution of the ordinary differential equation y’ = (1 — 2x)/2y valid only in the
interval (0, 1).

As we have seen, y = ¢* is a solution of the ordinary differential equation
¥' — y = 0. We further observe that y= e~* is also a solution and moreover
y = ¢,€* + c,e”* is a solution of this equation for arbitrary values of the constants
¢, and c,. It will be shown in Chapter 2 that y = c,* + c,e™* is the “general
solution” of the ordinary differential equation y* — y = 0. By the general
solution we mean a solution with the property that any solution of y" — y =
0 can be obtained from the function c,e* + c,e™* for some special values of the
constants ¢, and ¢,. Also, in Chapter 2 we will show that the general solution
of the ordinary differential equation y" + y = 0 is given by y(x) = ¢, cos x
+ ¢, sin x for arbitrary values of the constants ¢, and c,.

In this chapter we present-elementary methods for finding the solutions of
some first-order ordinary differential equations, that is, equations of the form

y' = F(xy), ‘ (6)

together with some intefesting applications.
The differential of a function y = y(x) is by definition given by dy = y'dx.



1.1 Introduction and Definitions

With this in mind, the differential equation (6) sometimes will be written in the
differential form dy = F(x,y)dx or in an algebraically equivalent form. For
example, the differential equation

2

3x
' +1
Y x3+1(y )

can be written in the form

3x? o 3x® 3x?
dy—[x3+](y+1)]dx or y

f+1’ P+ 1

There are several types of first-order ordinary differential equations whose
solutions can be found explicitly or implicitly by integrations. Of all tractable
types of first-order ordinary differential equations, two deserve special attention:
differential equations with variables separable, that is, equations that can be put
into the form '

) v
Y'=50) P(x)dx = ((y)dy,

and linear equations, that is, equations that can be put into the form

y' + a(x)y = b(x).

Both appear frequently in applications, and many other types of differential
equations are reducible to one or the other of these types by means of a simple
transformation.

MATHEMATICAL MODELS 1.1.1

Differential equations appear frequently in mathematical models that attempt
to describe real-life situations. Many natural laws and hypotheses can be trans-
lated via mathematical language into equations involving derivatives. For ex-
ample, derivatives appear in physics as velocities and accelerations, in geometry
as slopes, in biology as rates of growth of populations, in psychology as rates
of learning, in chemistry as reaction rates, in economics as rates of change of
the cost of living, and in finance as rates of growth of investments. :

It is the case with many mathematical models that in order to obtain a dif-
ferential equation that describes a real-life problem, we usually assume that the
actual situation is governed by very simple laws—which is to say that we often
make idealistic assumptions. Once the model is constructed in the form of a
differential equation, the next step is to solve the differential equation and utilize
the solution to make predictions concerning the behavior of the real problem.
In case these predictions are not in reasonable agreement with reality, the
scientist must reconsider the assumptions that led to the model and attempt to
construct a model closer to reality.

First-order ordinary differential equations are very useful in applications. Let
the function y = y(x) represent an unknown quantity that we want to study.
We know from calculus that the first derivative y’ = dy/dx represents the rate
of change of y per unit change in x. If this rate of change is known (say, by
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experience or by a physical law) to be equal to a function F(x, y), then the
quantity y satisfies the first-order ordinary differential equation y' = F(x, y).
We next give some specific illustrations.

® It has long been observed that some large colonies of bacteria tend to grow
at a rate proportional to the number of bacteria present. For such a colony, let
N = N(1) be the number of bacteria present at any time t. Then, if k is the
constant of proportionality, the function N = N(¢) satisfies the first-order or-
dinary differential equation'

N = kN. @)

This equation is called the Malthusian law of population growth. T. R. Malthus -
observed in 1798 that the population of Europe seemed to be doubling at regular
time intervals, and so he concluded that the rate of population increase is
proportional to the population present. In Eq. (7) N stands for dN/dt. (As is
customary, derivatives with respect to x will be denoted by primes and deriv-
atives with respect to ¢t by dots.) In this instance it is the time that is the
independent variable. Equation (7) is a separable differential equation and its
solution N(r) = N(0)e" is computed in Example 3 of Section 1.3. Here N(0) is
the number of bacteria present initially, that is, at time ¢ = 0. The solution N(¢)
can be represented graphically as in Figure 1.1.

N}

N(1) = N(0)e*

N(0)

Figure 1.1

The following arguments may be used as a justification for Eq. (7). Let N() be
the total population at time ¢ and let N(+ + Ar) be the total population at time
t + At. Assume that the number of births and deaths during the small interval At
are proportional to the product of the size of the population and the time interval
At, that is,

Birth = bN(r)Ar and Death = dN(HA¢,

'Since the function N(r) takes on only integral values, it is not continuous and so not differentiable.
However, if the number of bacteria is very large, we can assume that it can be approximated by a
differentiable function N(r), since the changes in the size of the population occur over short time
intervals.
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where b and d are positive constants. Then
N + A — N() = (b — d)N(DA:
or

N(I + At) - N(t) — (b — d)N(t)
At |

Taking limits as Az — 0 and setting k = b — d lead to Eq. (7).

It should be emphasized that Eq. (7) is a mathematical model describing a
colony of bacteria that grows according to a very simple, perhaps oversimplified,
law: It grows at a rate proportional to the number of bacteria present at any
time t. On the other hand, assuming this very simple law of growth leads us to
a very simple differential equation. The solution, N(r) = N(0)e*, of Eq. (7)
provides us with an approximation to the actual size of this colony of bacteria.
Clearly, a more realistic mathematical model for the growth of this colony of
bacteria is obtained if we take into account such realistic factors as overcrowding,
limitations of food, and the like. Of course, the differential equation will then
become more complex. It goes without saying that a mathematical model that
is impossible to handle mathematically is useless, and consequently some sim-
plifications and modifications of real-life laws are often necessary in order to
derive a mathematically tractable model.

® It is well known in pharmacology? that penicillin and many other drugs ad-
ministered to patients disappear from their bodies according to the following
simple rule: If y(¢) is the amount of the drug in a human body at time ¢, then
the rate of change y(t) of the drug is proportional to the amount present. That
is, y(¢) satisfies the separable differential equation

y = ~ky, (8)

where k > 0 is the constant of proportionality. The negative sign in (8) is due
to the fact that y(f) decreases as ¢ increases, and hence the derivative of y(r)
with respect to ¢ is negative. For each drug the constant k is known experimen-
tally.

The solution of the differential equation (8) is (see Example 3 of Section 1.3)

(1) = ye ¥, ! )

where y, = y(0) is the initial amount (initial dose) of the drug. As we see from
Eq. (9) (see also Figure 1.2), the amount of the drug in the patient’s body tends
to zero as t — «. However, in many cases it is necessary to maintain (approx-
imately) a constant concentration (and therefore approximately a constant
amount) of the drug in the patient’s body for a long time. To achieve this it is
necessary to give the patient an initial booster dose y, of the drug and then at
equal intervals of time, say every T hours, give the patient a dose D of the drug.

“This model, as well as other mathematical models in medicine, is discussed by J. S. Rustagi in Inz.
J. Math. Educ. Sci. Technol. 2 (1971): 193-203.

Pharmacology
Drug Dosages
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yl}

~1

Figure 1.2

Equation (9) indicates the amount of the drug in the patient’s body at any time
t; hence, it is simple to determine the amount of the dose D. In fact, at time
7, and before we administer the dose D, the amount of the drug present in the
body is -
y(7) = Yo€ i
If we want to maintain the initial amount y, of the drug in the body at the
times 7, 27, 31, . . . , the dose D should satisfy the equation

ye 5+ D =y,
Hence, the desired dose is given by the equation
D = y,(1 - e™). (10)

® Southwick and Zionts’ developed an optimal control-theory approach to the
education-investment decision which led them to the first-order linear (also
separable) differential equation

x =1 — kx, (1)

where x denotes the education of an individual at time t and the constant k is
the rate at which education is being made obsolete or forgotten.

® In learning theory the separable first-order differential equation

p(0) = a()G(p()) (12)

is a basic model of the instructor/learner interaction.* Here G is known as the
characteristic learning function and depends on the characteristics of the learner
and of the material to be learned, p(¢) is the state of the learner at time ¢, and
a() is a measure of the intensity of instruction [the larger the value of a(r) the
greater the learning rate of the learner, but also, the greater the cost of the
instruction].

’L. Southwick and S. Zionts, Operations Res. 22 (1974): 1156-1174.
‘V. G. Chant, J. Math. Psychol. 11 (1974): 132-158.
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m Newton’s second law of motion, which states that ““the time rate of change
of momentum of a body is proportional to the resultant force acting on the body
and is in the direction of this resultant force,” implies immediately that the
motion of any body is described by an ordinary differential equation. Recall
that the momentum of a body is the product mv of its mass and its velocity v.
If F is the resultant force acting on the body, then

%(mv) = kF, ‘ (13)

-where & is a constant of proportionality. Equation (13) is an ordinary differential

equation in v whose particular form depends on m and F. The mass m can be
constant or a function of 1. Also, F can be constant, a function of ¢, or even a
function of ¢ and v.

& Kirchhoff’s voltage law states that, “the algebraic sum of all voltage drops
around an electric circuit is zero.” This law applied to the RL-series circuit in
Figure 1.3 gives rise to the first-order linear differential equation (see also
Section 1.4)

LI + RI = V(1), (14)

where I = I(t) is the current in the circuit at time ¢.

iw/\l:\,‘_

+ +
40 ( I = 1) 3L
S
Figure 1.3

® Consider the one-parameter family of curves given by the equation
Flx,y) = c. (15)
Computing the differential of Eq. (15), we obtain
’ Fdx + Fdy = 0,
where F, and F, are the partial derivatives of F with respect to x and y, respec-
tively. Thus,
dy F

dx 'PTy (16)

gives the slope of each curve of the family (15). We want to compute another
family of curves such that each member of the new family cuts each member

Mechanics

Electric Circuits

Orthogonal
Trajectories
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. / / equipotential tine
/s(rcamline
I
.

,/T"Ti ' \
\\ ’ \
/ |
\-L.,Z_ I\\
/ / \\
Figure 1.4

of the family (15) at right angles; that is, we want to compute the orthogonal
trajectories of the family {15). In view of Eq. (16), the slope of the orthogonal
trajectories of the family (15) is given by [the negative reciprocal of (16)]
- F
ay _ T a7
dx F, .
The general solution of Eq. (17) gives the orthogonal trajectories of the family
(15).

There are many physical interpretations and uses of orthogonal trajectories:

L. In electrostatic fields the lines of force are orthogonal to the lines of constant
potential.

2. In mwo-dimensional flows of fluids the lines of motion of the flow—called
streamlines—are orthogonal to the equipotential lines of the flow (see Figure
1.4).

3. In meterology the orthogonal trajectories of the isobars (curves connecting
all points that report the same barometric pressure) give the direction of the
wind from high- to low-pressure areas.

® The red blood cells (erythrocytes) have a finite life span after which they are
eliminated from circulation. Therefore, a constant supply of young erythrocytes
produced by bone marrow is necessary. Let us denote by R(r) the number of eryth-

rocytes in the blood at time t and by R(¢) its time derivative (rate of change).
Then,

Rty = r= (1) — r(n, (18)

i.e., the rate of change is the rate of supply minus the rate of turnover (removal
from circulation by organs like liver or spleen). It is further assumed that the
turnover rate is proportional to the number of erythrocytes, r~(r) = bR(), where
b is a positive constant.



